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A computer program called Transonic Navier Stokes (TNS) has been devel-
oped which solves the Euler/Navier-Stokes equations around wings using a zonal
grid approach. In the present zonal scheme, the physical domain of interest is di-
vided into several subdomains called “zones” and the governing equations are solved
interactively. The advantages of the Zonal Grid approach are as follows: 1) the grid
for any subdomain can be generated easily, 2) grids can be, in a sense, adapted to
the solution, 3) different equation sets can be used in different zones, and 4) this
approach allows for a convenient data base organization scheme. Using this code,
separated flows on a NACA 0012 section wing and on the NASA Ames WING
C have been computed. First, the effects of turbulence and artificial dissipation
models incorporated into the code are assessed by comparing the TNS results with
other CFD codes and experiments. Then a series of flow cases are described where
data are available. The computed results, including cases with shock-induced sep-
aration, are in good agreement with experimental data. Finally, some “futaristic”
cases arc presented to demonstrate the abilities of the code for massively separated

cases which do not have experimental data.
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CHAPTER 1

INTRODUCTION

1.1 Background

Ever since the introduction of the Navier-Stokes equations in the early 1800’
by Navier [1] and Stokes 2], we have been confronted with a very challenging
situation. Because of the nonlinear and complex nature of these equations, the
number of closed form analytical solutions has been extremely limited. Hence,
the Navier-Stokes equations were largely unused for several decades, and did not
contribute to the early development of airplanes.

The first major breakthrough in the solution of these equations was intro-
duced by Ludwig Prandtl (3] in 1904. Prandt! brilliantly reasoned that for high
Reynolds number flows, viscous effects would be confined to a thin layer along a
solid surface, called the “Boundary Layer.” We owe much of our understanding
of the viscous flow phenomenon to this concept. Although this region occupies
only a small portion of a total flow field, all momentum, heat and mass transfer
to or from the surface must take place through this layer. Outside the bound-
ary layer, fluid behaves like an inviscid flow. This leads us to a very important
conclusion that separate equation sets can be solved in separate domains. There-
fore, aeronautical problems can be approached from different avenues; i.e., using
different equation sets, provided that limitations are kept in proper perspective.
The aforementioned “different equation sets” are subsets of the Navier-Stokes
equations. If the viscous terms are neglected, the resulting equations describe
the motion of an inviscid but nonlinear, compressible and rotational fluid: the
so-called “Euler equations.” If the rotationality is ignored, we get nonlinear, com-
pressible and irrotational flow; i.e., the full potential equation which can support
only weak shocks. Further simplification leads to Laplace’s equation which de-
scribes an incompressible, inviscid, irrotational and steady flow.

Introduction of digital computers brought a great change to the aeronau-
tical sciences. They opened new avenues and enabled researchers to tackle the
problem of solving the above equation sets. With the advent of computers, a
new discipline of aerodynamics was born, i.e., Computational Fluid Dynamics
(CFD), and researchers attacked problems which were previously unsolvable.
But it was soon realized that compromises had to be made because computer
time and memory limit the range of physical and geometrical scales that can be
resolved. The more complex the geometry, the less physics we can extract. In




terms of numerical techniques, the choice between a complicated set of equations
with simple geometry and a sophisticated geometry with simpler equations had
to be made.

Basically there are three compelling motivations for vigorously developing
Computational Aerodynamics (Chapman [4]). The first one is to provide new
technological capabilities which the wind tunnels cannot offer. For example,
the Reynolds number associated with aircraft flight, the flowfield temperatures
around atmospheric entry vehicles like the space shuttle, hot jet plumes, or store
ejections cannot be easily simulated by wind-tunnels. A second compelling mo-
tivation concerns energy conservation. Wind tunnels consume large amounts of
energy with increasing unit costs every year, whereas computers do not consume
as much energy. The third motivation can be explained in terms of economics.
Chapman [4] indicated that the net cost to conduct a given numerical simula-
tion with a fixed algorithm has decreased ten times every eight years because
computer speed has increased at a much greater rate than computer cost.

Developments of computational aerodynamics have been paced by computer
memory and speed. Naturally, work started with the most simplified equation
sets and configurations and has progressed to more sophisticated geometries with
better approximation of the flow physics. Chapman [4] presents the historical
progress of Computational Aerodynamics in four stages, each of which is a suc-
cessively more refined approximation to the full Navier-Stokes equations. Stage I
is the linearized inviscid approximation or Laplace’s equation. Computational
methods which solve this governing equation are called “Panel Methods” and
have been very useful in the design process. The linearized inviscid approxima-
tion contains only 3 terms; whereas the full Navier-Stokes equations represent-
ing conservation of mass, momentum and energy contain altogether 60 partial-
derivative terms when written out in three Cartesian coordinates. Panel methods
provide realistic determinations of pressure distribution, of lift and side forces
in attached subsonic and supersonic flow using small disturbance theory. For an
extensive list of references and survey articles the reader is referred to [4],[5].

The second stage of approximation is called “nonlinear inviscid” and here
only the viscous terms are neglected, but in its most complex form, 27 out of
60 partial derivative terms are retained from the full Navier-Stokes equations.
The transonic small-disturbance equation, the full potential equation and the
Euler equations fall into this category. Nonlinear inviscid computations for tran-

sonic flow are extensive design tools for the aircraft industry today. For more
information please refer to [4].

The third and fourth stage of Computational Aerodynamics involve the
Reynolds-averaged Navier-Stokes equations and the Large Eddy Simulation(LES)



respectively. The Reynolds-averaged Navier-Stokes equations are obtained by re-
placing the dependent variables in the original Navier-Stokes equations by the
mean and fluctuating parts and then time-averaging the equations. This time
interval must be long compared to the characteristic time of turbulent eddy fluc-
tuations and short compared to the characteristic time of the, perhaps, unsteady
main flow. The resulting equations describe the time-dependent flow field but
are not capable of capturing fluctuating turbulent eddies of any length scale; i.e.,
all turbulent eddies must be modeled. In large eddy simulation, the small scale
eddies are modeled while the large eddies are computed. Solving the full Navier-
Stokes equations about a complex geometry at high Reynolds number without
any averaging is yet beyond the reach of present day and the near future super-
computers. For this reason, the “Reynolds-averaged Navier-Stokes” equations in
the “thin-layer” form are used in this project. Therefore, it is necessary to cite
some of the significant steps taken in this relatively new area.

Early work started with the computation of laminar flow which is governed
by the steady Navier-Stokes equations. Although a good survey on laminar flow
research has been done by Peyret and Viviand [6], certain notable efforts are listed
below: The shock wave laminar boundary layer interaction by Mac Cormack (7],
the computation of laminar flow over a compression corner by Carter [8], and
hypersonic flow over blunt bodies by Jain and Adimurty [9]; also, incompressible
flow over bluff bodies and airfoils by Thompson et al. [10] and Hodge and Stone
|11}, and supersonic two-dimensional flow over a blunt body with impinging shock
wave by Tannehill et al. [12]. In three-dimensional laminar flow simulation, we
can mention the computation of the flow over an inclined body of revolution
by Li [13], and the laminar flow over three-dimensional compression corners by
Shang and Hankey [14] and Hung and Mac Cormack [15].

Since most aerodynamic flows encountered in actual flight conditions are
turbulent, the Reynolds-averaged Navier-Stokes formulation draws much of the
attention from engineers and scientists. Early turbulent flow simulations started
with two-dimensional flows and include the shock wave/turbulent boundary layer
interaction study by Wilcox [16] and Baldwin and MacCormack [17], and the high
Reynolds number transonic flow computation over airfoils by Deiwert [18]. Some
numerical computations were also carried out for supersonic flow over compres-
sion corners by Wilcox [19], Shang and Hankey [20], and Hung and MacCormack
|21} and axisymmetric afterbody computations were carried out by Holst [22].
Some of the turbulent simulations yielded very interesting results which closely
modeled the actual physical phenomena: For instance, the unsteady buffeting
of a thick circular arc airfoil in transonic flow was simulated by Levy [23], the
transonic drag polar and lift curve for a supercritical airfoil with buffeting forces
were reported by Deiwert and Bailey [24], and the simulation of transonic aileron
buzz was achieved by Steger and Bailey [25].
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Three-dimensional solutions of turbulent flows with the Reynolds-averaged
equations are relatively few. The first simulations were the flows around relatively
simple geometries; for example the three-dimensional swept shock wave/turbulent
boundary layer interaction by Hung and MacCormack [26], and the flow along
a corner for both transitional and fully turbulent flow by Shang et al. [27].
Another notable work was the simulation of a separated flow over a hemisphere-
cylinder body at an angle of attack by Pulliam and Steger [28]. In most of these
simulations, the “thin-layer” approximation to the Reynolds-averaged Navier-
Stokes equations devised by Baldwin and Lomax [29] has been utilized. Very
recently, computation of more complex geometries involving more sophisticated
flow physics has been attacked. Work in this area includes the transonic fuselage
and forebody flows of Cosner [30], the hypersonic wing/fuselage interaction of
Shang [31], the supersonic blunt-fin/wall interaction of Hung and Kordulla (32],
the high-subsonic turret flow simulation of Purohit et al. [33], the transonic wing
flow of Mansour [34], the transonic afterbody flows of Deiwert and Rothmund
[35] and Deiwert et al. [36], the transonic wing flows of Agarwal and Deese 37|,
the transonic forward-fuselage flow of Chaussee et al. [38], and the high-subsonic
delta wing and low supersonic, shuttle-like flows of Fujii and Kutler [39].

1.2 Motivation

In the previous section, the role of Computational Fluid Dynamics as a re-
search and design tool in aeronautical sciences has been introduced. It was also
stated that there emerged numerous pioneering works in computational Navier-
Stokes technology. Some of the reasons for this movement are explained as fol-
lows: First, the computer hardware(memory and speed) have dramatically im-
proved by the introduction of the so-called supercomputers such as the Cray 1,
Cray XMP, CDC Cyber 205 [4]. Second, there is an increasing demand from
the aircraft industry to utilize more realistic approximations in design prob-
lems. For instance, modern military aircraft must be able to fly in the transonic
regime at high angles of attack with significant regions of separated flow, and
the full Navier-Stokes equations are the proper model equations for this pur-
pose. These reasons have given a tremendous impetus to viscous transonic flow
research, especially focused on flow separation and shock/boundary-layer inter-
action. In an excellent survey about transonic Navier-Stokes technology, Mehta
and Lomax [40] list the flow conditions for which the Navier-Stokes equations ap-
pear to be required: 1) Shock/boundary layer interaction with no separation, 2)
shock-induced turbulent separation with immediate reattachment(shock-induced
separation bubble), and 3) shock-induced separation without reattachment. The
proper treatment of shock/boundary layer interaction, at least locally, necessi-
tates the use of the Navier-Stokes equations [41]. There are primarily two mo-
tivations for understanding separated flows [40|. Since uncontrolled separation
causes stall, controlling and minimizing the effects of separation are desirable.
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Separation can also be used to improve aerodynamic performance; for instance,
the rolled up vortex sheet from the sharp leading edge of a delta wing or strake
creates so-called “nonlinear lift” which can be intelligently exploited by fighter
aircraft designers.

Viscous transonic research has been carried out by either viscous-inviscid
interaction procedures or Navier-Stokes procedures. The viscous-inviscid inter-
action procedure is quite convenient for the study of separation because the thin
shear layer approximation remains valid in mildly separated flows [3]. Computa-
tionally, interaction codes require significantly less computer time than Navier-
Stokes codes for problems with small regions of separation. However, Navier-
Stokes formulations are generally much easier to code [42]. Moreover, for strong
viscous-inviscid interactions, the current boundary-layer based schemes tend to
break down. The present state-of-the-art associated with three-dimensional in-
teraction methods applied to separated flows is far from mature [42]. There
is some progress on computation of turbulent flows over wings primarily using
integral boundary layer schemes, but these schemes cannot easily compute sep-
arated flows. The interested reader is directed to Refs. [42],(43],[44] for more
information.

The primary difficulties associated with Navier-Stokes procedures are now
restated for emphasis: 1) computer speed and memory limitations, 2) difficulties
in turbulence modeling, and 3) difficulties in geometry definition and grid gen-
eration around sophisticated geometries. The Navier-Stokes simulations cited in
the previous section utilized relatively coarse grids and required large amounts of
computer time even on the latest supercomputers. However, the idea of dividing
the control volume around the geometry into different “blocks” or “zones” and
solving the governing equations interactively seems very attractive, because this
technique reduces the difficulties of the first and third items listed above. This
idea may be elaborated on as follows: Instead of putting the complete data base
into the main computer memory, only the data associated with one grid zone can
be put into main memory while the data from the other zones reside on some
other secondary storage device. This relaxes the computer main memory burden.
Second, and more importantly, this scheme relieves the task of generating grids
around geometrically complex domains such as complete aircraft configurations.
In this fashion, the total flow domain can be divided into multiple zones each of
which may be in a different form to respond to the geometry, boundary condition,
and physical constraints.

In this work, the Euler/Navier-Stokes equations using a zonal grid tech-
nique are solved to study three-dimensional flow separation on wings. For this
purpose a computer code called Transonic Navier Stokes (TNS) has been devel-
oped [45], which presently utilizes four grid zones for isolated wing geometries.
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In this code, the “thin-layer” approximation to the Reynolds-averaged Navier-
Stokes equations is solved by utilizing highly clustered grids near the body. Away
from the body, the inviscid-rotational features of the flow are simulated utilizing
the Euler equations. To the authors’ knowledge, the TNS computer program
represents the first three-dimensional Euler/Navier-Stokes zonal algorithm.



CHAPTER 2

DESCRIPTION OF THE ZONAL PHILOSOPHY

2.1 Introduction

Historically the zonal philosophy is not new. It was used implicitly in the
introduction of Boundary Layer theory by Prandtl [3] where the flow was divided
into two different regions, inviscid and viscous. There are numerous examples of
viscous-inviscid interaction research which use a type of zonal approach. Also,
the zonal philosophy finds an application in turbulence modeling. As described
by Kline et al. [46], zonal turbulence modeling is an attractive alternative to
universal turbulence models.

The extensive use and application of zonal schemes in different forms has
gained popularity recently. Boppe [47] illustrated that using nested grid sys-
tems around complex geometries such as arbitrary wing-body configurations with
winglets, pods, canards and tails makes it very practical to construct transonic
codes. Also, Lee (48], Lee and Ruppert [49], Atta [50] and Atta and Vadyak [51]
have used the block grid approach for transonic potential computations. Other
zonal grid approaches for the Euler equations have been used by Benek et al.
[52], Hessenius and Pulliam [53], Rai [54] and Hessenius and Rai [55].

Numerical grid generation in three dimensions is one of the biggest pacing
items in Computational Fluid Dynamics. Numerically generated curvilinear co-
ordinate systems are commonly used around arbitrary geometries. Body fitted
systems are especially helpful for the treatment of boundary conditions. In gen-
eral, numerical grid generation involves the transformation of a complex physical
space into a geometrically simple computational domain. When the geometry
of interest in the physical space is simple enough, the transformation can be
achieved in a straightforward manner. But as the geometry becomes more com-
plicated, such as the wing/body/strake/tail combination of a contemporary air-
craft, the issue of grid generation becomes indeed challenging, and sometimes
the domain cannot be mapped into a single block. The practical problems en-
countered in the generation of a single grid about a complex geometry are as
follows: Often times, trying to generate a single grid results in a skewed grid
which causes solution inaccuracies. Another difficulty is obtaining the proper
level of grid refinement in regions of flow gradients, such as a shear layer, a shock
wave or a vortex. Moreover, trying to configure an acceptable grid via tuning of
existing grid generation schemes requires substantial amounts of time and effort.




One approach to this challenging issue is to divide the domain into a number
of geometrically simple subdomains, called “blocks” or “zones.” Fig. 1 illustrates
the idea of zonal grids for a wing/body/tail combination of a fighter airplane. As
demonstrated here, each component is mapped into a simple rectangular compu-
tational box. There are a number of ways to structure zonal grids. In general, it
is quite difficult to classify zonal grid techniques in a clear and concise fashion. In
Fig. 2, an approach to zonal grid classification is presented. As suggested, zonal
schemes can be divided into two groups. The first group is composed of schemes
with overlapping grid zones, and the second group with zones which do not over-
lap (interface schemes). In the first group (overlap schemes), the overlapping may
be either “complex,” i.e., the zonal boundaries don’t match each other in any
way, or “simple” where the zonal boundaries coincide. The Chimera grid scheme
of Ref. [52] exploits the complex overlap zonal grid technique. The present TNS
code, however, makes use of the “simple overlap” zonal grid technique. Also, it
is possible to construct other overlap schemes which blend complex and simple
overlap schemes.

The second group of zonal schemes consists of “patched” grids which in-
terface each other at common boundaries. This group can be divided into two
subsets according to whether the grid lines at the common surface are continuous
or discontinuous. In the first scheme, no discontinuity in function, spacing, or
slope is permitted. The second scheme consists of discontinuous grids. The dis-
continuity can be in the grid spacing, in the function values or in the slope of the
grid lines. Also, combinations of different kinds of discontinuities can be used in
the same grid. This generally occurs when the flow field is divided into different
zones beforehand, and then the grid in each zone is generated independently (see
Refs. [48],(49],/56]). The discontinuous grids in Fig. 2 are also “metric discontin-
uous” in the context of Rai’s [54] definitions. Interface boundary conditions are
implemented between zones by either interpolation or other special techniques.
For example, a conservative zonal boundary treatment for discontinuous grids is
given in Refs. [53],[54], and [55].

The advantages of zonal grid schemes are summarized as follows:

1) The grid for any subregion of the domain can be generated easily.

2) The grid can be adapted to the problem. This is achieved by placing
refined zones in regions of high gradients such as shear layers, shock waves,
jets and wakes, vortices, etc., whereas coarse zones are used in regions of small

gradients.

3) Different equation sets can be used in different zones; for instance, the
Navier-Stokes equations are used in regions where viscous and/or heat transfer



effects are important and the Euler equations are used where inviscid rotational
effects are important.

4) With the use of grid zoning, an efficient mesh topology can be improved,
or an inefficient topology can be made acceptable.

A measure of grid efficiency, the Mesh Efficiency Ratio (MER) was defined in Ref.
[57]. Tt is the ratio of the number of grid points on the surface of interest to the
number of grid points in an average two-dimensional surface of the same three-
dimensional grid. The latter quantity is simply the two-thirds power of the total
number of grid points. Larger values of MER, in general, indicate more efficient
grid topologies as opposed to the smaller values of MER which represent less
efficient topologies. MER values on the order of one for an inviscid grid and on the
order of one-half for a viscous grid are about average. Of course, this number can
be changed by up to a factor of two depending on grid clustering. Representative
values of MER for a few well-known isolated-wing grid topologies are shown in
Table 1 for both viscous and inviscid grids. This table was constructed with
conservative stretching estimates for all directions. Thus, larger values of MER
could be obtained with more rapid stretching. More on the efficiency of mesh
topologies can be found in Refs. [57], and [58].

Table 1. Comparison of several isolated-wing mesh topologies using the MER
efficiency parameter

Mesh topology MER (inviscid) MER (viscous)

H-H 0.38 0.24
C-H 0.50 0.32
C-0 0.79 0.50
O-H 0.79 0.50
0-0 1.26 0.79
H-H (zonal) 1.13 0.71

As seen from Table 1, it is difficult to advocate the H-H topology about a
wing involving viscous flow calculations because the boundary layer clustering
at the wing surface must be continued upstream and downstream of the wing as
well as outboard of the wing tip. Thus, many points are wasted, and the MER
is as low as 0.2-0.3. With a zonal grid approach applied to the inefficient H-H
topology, much improved MER values can be obtained as seen by the last entry
in Table 1. However, the complete aircraft configuration is the ultimate aim of
CFD, not isolated wings! Generally, the Cartesian nature of the H-H topology is
an appropriate topology for wing/fuselage geometries. This is because, as seen
in Fig. 1, the H-H grid topology allows each fuselage cross-section to be fitted




with an efficient polar-like grid, whereas the wing cross-sectional grid retains the
Cartesian-like topology. This is a very flexible topology and can be modified
to handle more complicated configurations. For example, in addition to the
wing, other lifting surfaces including canards, strakes and horizontal and vertical
stabilizers can be handled in a straightforward manner.

2.2 Zonal Grid Generation

In TNS, grid generation starts with the generation of a global single-zone
grid which includes the entire flow field. This grid contains no viscous clustering
and has an H-mesh topology in both the spanwise and chordwise directions. The
global grid can be generated from either of two approaches: the elliptic solver
approach of Sorenson and Steger [59], or the parabolic solver approach of Ed-
wards [60]. They have the capability of generating suitable grids about isolated-
wing geometries with either free-air or wind-tunnel wall outer boundaries. For
the most part, the elliptic solver approach of Sorenson, which generates finite-
difference grids by solving a set of Poisson’s equations, is used in the present
study. This grid generation method allows control over both grid point spacing
along, and normal to, the boundaries and angles with which the grid lines inter-
sect the boundaries. This control is obtained by specification of the boundary
conditions and the inhomogeneous terms contained within the Poisson’s equa-
tion. Once the boundary definition and grid characterictics have been set, the
three-dimensional elliptic code solves the governing equations using a successive
over-relaxation (SOR) procedure.

Once the base grid is generated, it is divided into zones utilizing a “zoning”
algorithm. In the present TNS code an isolated wing grid is configured with four
zones. The first grid zone (Grid 1) is, by and large, the coarse base grid itself
with a small three-dimensional domain left open into which the rest of the grids
and the wing are placed. The second grid zone(Grid 2) fills this open domain,
with a small overlap region in common with Grid 1 and also another small three-
dimensional domain for the third and fourth grids. Grid 2 is constructed so as to
contain twice as many grid points in each spatial direction as the original base
grid. This refinement of Grid 2 relative to the base grid is accomplished via
cubic-spline interpolation.

The final two grid zones (Grids 3 and 4) are designed to capture the upper
and lower surface viscous effects of the wing, respectively. They occupy the space
left open by the block of points removed from Grid 2, again with a small region
of overlap included. Grids 3 and 4 are constructed so as to contain the same
number of points in both the spanwise and chordwise directions as Grid 2. But
since they are to capture the viscous effects of the wing, the grid points in the
normal direction are highly clustered. This four-zone grid topology produces an
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overall grid with a MER of about 0.8. The outer two grid zones are topologically
represented in the computational domain as cubes with smaller cubes removed
from the middle, but the third and fourth grids are represented as simple cubes.

In order to illustrate this zonal grid topology, a series of figures is presented.
The wing configuration used here is the so-called “WING C” which is a research
wing and was designed by a cooperative effort between NASA-Ames Research
Center and Lockheed-Georgia. The planform view of the WING C grid is pre-
sented in Fig. 3. The wing has an aspect ratio of 2.6, leading edge sweep of
45 degrees, taper ratio of 0.3, and a twist angle of 8.17 degrees. Fig. 4 shows
a perspective view of the grid with the symmetry plane highlighted. From this
view, the wing surface grid resolution including the treatment of the wing tip can
be seen. A cross-sectional view of the grid in the vicinity of the wing, showing
details of grid zones 2, 3 and 4 at the symmetry plane, is displayed in Fig. 5.
Note that the Navier-Stokes grid expands in thickness from the leading edge to-
ward the trailing edge to better capture the growing boundary layer. In the same
plane, an expanded view of the WING C leading edge grid detail is presented in
Fig. 6. The spanwise cross-sectional view of the wing grid showing part of zones
2, 3 and 4 is given in Fig. 7. The elliptic grid generation scheme was used for
the grid just presented in Figs. 3-7, and was designed for free-air computations.

As was mentioned earlier, the elliptic and parabolic grid generators are ca-
pable of generating grids suitable for use with either free-air or wind-tunnel wall
boundaries. Fig. 8 shows a typical grid with outer boundary positions specified
to coincide with the position of the wind tunnel walls from the NASA-Ames High
Reynolds Number Channel I [61]. The grid is plotted in perspective so that de-
tails on the upper and lower wind tunnel surfaces, the inflow and outflow planes,
and the wing-symmetry plane are all visible. This grid, which was generated
by the parabolic grid generation approach |60], becomes the outer coarse grid
zone (Grid 1). This grid detail near the wing /symmetry plane juncture has been
removed. It is in this region that grid zones 2, 3 and 4 are located as described
earlier. The wing geometry used in the wind-tunnel flow simulation of Fig. 8 is
shown in Fig. 9. It is composed of NACA 0012 cross-sections and has a taper
ratio of 1.0, a leading-edge sweep of 20 degrees, an aspect ratio of 3, and is rigged
in the tunnel wall grid at 2 degrees angle of attack.

The total number of grid points associated with the WING C and NACA 0012
grids for free air simulations is 165,321. The individual grid point breakdown for
each zone is as follows: Grid 1, 63 x 26 x 25 = 40,950; Grid 2, 69 x 29 x 21 =
42,021; Grid 3, 61 x 27 x 25 = 41,175; and Grid 4, 61 x 27 x 25 = 41,175. The
wind-tunnel wall grid for the NACA 0012 configuration has fewer grid points; it
is an exact subset of the NACA 0012 wing free-air grid and consists of 149,071
points (see Fig. 8).
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2.3 Zonal Interface Scheme

The zonal approach introduces a new aspect associated with boundary condi-
tions, namely the interface conditions between neighboring blocks. Whereas the
interior points of each zone are updated using the standard integration scheme,
the boundary points are updated via interpolation. It was pointed out earlier
that the zonal scheme followed here is a “simple overlap” one, and owing to this
feature, the interpolation procedure is greatly simplified. This is because the
grid zones are carefully constructed from a base grid such that surfaces requir-
ing interpolation are coincident. The most complicated zonal interface boundary
condition involves only a series of one-dimensional linear interpolations. This
situation is illustrated in Fig. 10. In this hypothetical case, grid Zone 1 is a
coarse grid which interfaces with Zone 2 which is a fine grid. To facilitate the
implicitness of the iteration algorithm in the present approach, the blocks are
overlapped by one to several mesh-cell widths.

In the interface boundary condition scheme, the idea is to obtain flow field in-
formation from the interior of Zone 1 and to use it to satisfy the proper boundary
conditions on the ABCD surface of Zone 2. Since the grids of Zone 1 and Zone
2 have been constructed to coincide with plane ABCD, the process is greatly
simplified. The ABCD surface is shown in transformed space in Fig. 10b. The
points from both grid zones are indicated. Note that the grid points from Zone
1 represent a subset of the Zone 2 points. Hence, the dependent variables at
the points marked with plus symbols (Zone 2) are computed by a series of linear
interpolations using the points marked with circular symbols (Zone 1). The pro-
cess of interpolating information back from Zone 2 to Zone 1, which is required
for the EFGH surface is even simpler than in the first case. This is because
the interpolation simply becomes “injection.” That is, even though interpolation
is carried out, the end result of this operation is the straight transfer of values
from Zone 2 to Zone 1 without interpolation errors. This is because every grid
point in the Zone 1 boundary (EFGH), has an exactly matching point on the
corresponding internal plane (EFGH) of Zone 2. This is readily seen by looking
at Fig. 10b and noting that every Zone 1 point (circular symbols) has an exact
matching point in Zone 2 (plus symbols).

The present interface scheme is organized such that only the two planes
involved in the interpolation need to be defined: the base and target planes.
These interface surfaces are referred to as “planes.” However, this is true only in
the computational domain. In the physical domain these “planes” are actually
curved three-dimensional surfaces. Each boundary plane at a grid zone interface,
which requires data for boundary conditions, is called a target plane; and each
interior plane which supplies interpolation data to a target plane, is called a base
plane. For instance in Fig. 10, when we want to obtain flow field information
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from the interior of Zone 1 and to use it as the boundary condition for Zone
2, the ABCD plane becomes the base plane in Zone 1 and at the same time it
becomes a target plane for Zone 2. These base and target planes are grouped
into three categories : J planes, K planes and L planes. Each one is defined by
six integers. For example, the J planes are defined by : 1) the grid zone number
from which the base or target surface is obtained, 2) the J plane number in that
particular zone, 3) the starting K index, 4) the ending K index, 5) the starting L
index, and 6) the ending L index. For instance in Fig. 10, the ABCD and EFGH
planes are typical J planes. The K and L planes are defined in a similar way.

Whereas the base and target plane arrays completely define the dependent
variable values to be used in the interface interpolation process, the independent
variable values (spatial coordinates) are obtained from the grid distribution which
passes through the origin of the coordinate system (the point at the wing root
leading edge). Obviously, these grid distributions do not uniquely represent all
the possible grid distributions that may exist in a general three-dimensional mesh.
However, they offer a very flexible and easy to implement interpolation scheme
with a reasonably small error. Moreover, if the interpolation is, for example, a
simple halving of the mesh which is the case for the most part of the TNS grid,
it is not important to know precise grid coordinates.

At the beginning of each iteration for grid zone NZ, boundary values for all
grid zone NZ interface planes are updated from a storage array called BCBUF
which must be shuffled back and forth from the extended storage. After the
interface planes and any other standard boundary conditions are updated, the
interior solution is updated by using the standard integration algorithm. Then
any base planes that reside in grid zone NZ are interpolated to produce the
corresponding target planes for use in neighboring grid zone interface boundaries.
These target planes are stored in the BCBUF array. This completes the iteration
for grid zone NZ and the algorithm proceeds to grid zone NZ+1.

A zonal boundary scheme in an ideal sense should be conservative and should
permit distortion-free movement of flow discontinuities such as shocks and slip
surfaces across zonal interfaces. Let us investigate our zonal boundary scheme
with regards to this condition. The upper and lower grid interfaces between the
inner Euler (zone 2) and Navier-Stokes blocks (zones 3 and 4) are one-to-one
in both the ¢ and n directions (streamwise and spanwise directions for a wing
topology), but in the ¢ direction these planes involve a spacing discontinuity or
“metric discontinuity.” This feature can be seen most easily in the grid plots
of the Figs. 4-7. This is important because the interpolation process utilized
automatically becomes an “injection” for these interface boundaries and therefore
is conservative. Thus, a strong shock wave crossing these boundaries, which is
quite likely to occur, should do so with minimal numerical inaccuracies. The
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other interface boundary planes are composed of discontinuous grids and, in
general, are not conservative, but could be made conservative if necessary by
using the approach of Rai |54}, and Hessenius and Rai [55].

2.4 Data Management

Once the grid is generated and divided into the proper zones, the flow solver
is initiated. The iteration procedure starts in the outer Euler blocks (first Grid 1,
then Grid 2) and ends with the two Navier-Stokes blocks, first the upper Navier-
Stokes block (Grid 3) and then the lower block (Grid 4). Only one iteration
using a spatially varying time step is completed in each zone before passing to
the next. However, many iteration and/or time-stepping strategies could be used
to improve convergence. Only the flow field solution (Q arrays), transformation
Jacobian (J), metric quantities, and the turbulence model arrays (when appro-
priate) associated with a single block reside in main memory of the Cray-XMP
at a time. The information associated with the other blocks resides in extended
storage. On the Cray XMP this device is called the Solid State Device or SSD.
The SSD is utilized functionally in the same manner as standard rotating disk
extended storage. However, the SSD extended storage is physically made up of
semiconductor memory and therefore is much faster. Using the SSD instead of
disk greatly reduces 1/O wait time, and for jobs which are normally I/O bound
this is a significant advantage.

In the present zonal approach, the use of the SSD allows a great deal of
flexibility because a larger number of grid blocks can be supported without sig-
nificant additions to main memory. Of course the limiting factor with regard to
this point is the size of SSD. The SSD installed with the NASA Ames Cray XMP
presently has 16 million 64-bit words of memory. This can easily be extended
to 32 million words if half precision (32 bits) is used. The current version of the
TNS code, with grid dimensions as outlined above in the grid generation section,
requires 5.8 million words of SSD storage. All arrays on the SSD are stored in
64-bit precision with the exception of the metric arrays which are stored with
32-bit precision. A test was performed with 64-bit metric storage that produced
results very close to the case with 32-bit metric storage.

To allow more space in main memory, the metrics are shuffled into main
memory from the SSD in two-dimensional planes as needed. This allows the
maximum grid size of each grid zone to be about 50,000 points. Because the flow
solver algorithm used in TNS is an Alternating Direction Implicit (ADI) algo-
rithm with implicit sweeps in all three directions, the metrics must be transferred
into main memory with three different orientations, in x-y planes, x-z planes and
y-z planes. Thus, there are three different metric orientations stored on the SSD.
Because of the availability of so much storage on the SSD, this does not cause
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any problem and makes overall memory management more efficient. In addition,
each of the metric arrays is required in main memory several times for each grid
zone during each iteration. This places extreme demands on the TNS I/O re-
quirements. Nevertheless, with the efficiency level afforded by the SSD, these
I/O requirements are handled without problem.
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Fig. 1. Body-conforming zonal grids of a fighter aircraft configuration in the physical
and computational spaces.
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ZONAL SCHEMES
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Fig. 2. An approach to the classification of the present zonal grid techniques.
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Fig. 4. Perspective view of embedded grid with upper symmetry plane (y = 0,2 > 0)
and wing surface highlighted.
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CHAPTER 3

DESCRIPTION OF THE PHYSICAL EQUATIONS
AND THE NUMERICAL METHODS

3.1 Introduction

The equations solved in this study are the Euler and Reynolds-averaged
Navier-Stokes equations written in strong conservation form. The Reynolds-
averaged equations are simplified by using the standard thin-layer approximation
for the viscous terms. Once the zonal scheme is developed, any of the standard
Navier-Stokes integration algorithms can be used. In this study, the basic gov-
erning equations and numerical algorithm including the turbulence model have
been taken from the Pulliam-Steger ARC3D computer code [62]|. To establish a
basic level of understanding for the present approach, certain characteristics of
the ARC3D computer code used within TNS are now briefly discussed.

The governing equations are generally nondimensionalized by free-stream
quantities and- are transformed to the computational domain (&,7m,¢) so as to
preserve the strong conservation form of the equations (see Sec. 3.2). The time-
dependent metrics which occur in the most general form of the Euler/Navier-
Stokes equations have been omitted. This was done to save computer memory.
Thus, the present formulation is incapable of time varying grids but still has the
capability of resolving time-dependent flow-field physics. However, adding the
time-dependent grid capability back into the present code is not a difficult task.

Two numerical algorithms have been investigated within the TNS computer
code, an ADI algorithm which solves block-tridiagonal matrices along each coor-
dinate direction and a diagonalized algorithm which solves scalar pentadiagonal
matrices along each coordinate direction (see Sec. 3.3). The first algorithm is
a variation of the Beam-Warming ADI scheme [63], and the second is an ex-
tension of this scheme due to Pulliam and Chaussee [64]. Both schemes use the
standard second-order-accurate central differencing of the governing equations to
construct the appropriate spatial differencing scheme. The block scheme uses a
fourth-order-accurate smoothing operator on the right-hand side of the iteration
algorithm and a second-order-accurate smoothing operator on the left-hand side.
The diagonal scheme uses a fourth-order-accurate smoothing operator on both
the left- and right-hand sides.

The diagonal algorithm has been implemented with two spatially varying
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time-step philosophies; one which scales the time step with the transformation
Jacobian and the other with a combination Jacobian/local-solution variation.
The block algorithm uses a time-step which is constant in a spatial sense as well
as from grid zone to grid zone.

All of the results presented in this report have been computed using the di-
agonal algorithm with fourth-order implicit smoothing and the Jacobian-scaled
time-step variation. This algorithm combination seemed to be the most compu-
tationally efficient of all the variations tested. More discussion of these aspects
can be found in Flores [65] where a comparison of these algorithm variations
in conjunction with zonal grid variations has been made. The turbulence model
used in the TNS computer program was the Baldwin-Lomax algebraic model [29]
because of the ease with which it can be implemented.

3.2 Governing Equations and Approximations
3.2.1 Equations in Non-Dimensional Form

The strong conservation law form of the Navier-Stokes equations are used
for shock capturing purposes. The equations in Cartesian coordinates in non-
dimensional form can be written as (cf. Peyret and Viviand [66))

a—g+@+a—F+a—G—aE“+aFV+aG” (3.1)
ot 9z dy Idz Oz dy 0z '

where
P
pu
Q=|pv|,
pw
e
pu pv pw
pu2 +p puv puw
E = puv , F=|p24p|, G= pUw , (3.2)
puw prw pw2 +p
u(e + p) v(e + p) w(e + p)
0 0 0
Tzz Try Trz
E,=Re ' |1y |, F,=Re'|r,|, G,=Re ' |7y
Tex Tzy Tzz
Bz By Bz

28



with
Tez = Muz + vy + w;) + 2uu,

Tyy = Muz + vy + w;) + 2uvy
T2z = MUz + vy + w;) + 2pw,
Try = Tyz = p(uy + vy)
Toz = Tzz = p(uz + wy)
Tyz = Tay = w(Vz + wy)

Br =vkPr 10,e; + ur,, + UTzy + WTg,

(3.3)

By = vk Pr'0yer + ury, + UTyy + WTy,
Bz = YEPr '3zes + Uty + v7oy + WTo,
er =ep ' —0.5(u? + v? + w?)
The Cartesian velocity components u, v, and w are nondimensionalized by
@ (the free-stream speed of sound), density p is nondimensionalized by p., ;

and the total energy per unit volume e is nondimensionalized by p..a% . Pressure
can be found from the ideal gas law as

p=(7-1)[e - 05p(u? + v% + w?)] (3.4)
and throughout v is the ratio of the specific heats. Also, ¥ is the coefficient

of thermal conductivity, 4 is the dynamic viscosity, and A from the Stokes’

hypothesis is —2/3u. The Reynolds number is Re and the Prandtl number is
Pr.

To enhance numerical accuracy and efficiency and to handle boundary con-
ditions more easily, the governing equations are transformed from the Cartesian
coordinates to general curvilinear coordinates(Fig. 11) where

T=1

E = e(x’y’z7t) (3.5)
n =n(z,y,2,t)

¢ = ¢(z,y,2,t).

The resulting transformed equations are not much more complicated than the
original Cartesian set and can be written in nondimensional form as

9 - 0 - - d - n 9 , - R
é;Q + 6—£(E - Ev) + an (F Fv) + EX (G Gu) =0 (3.6)
where
p pU
i pu X pulU + &.p
Q=J"|pv|, E=J1| pU+¢&p |,
pw pwU + €.p
e (e +p)U — &p
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oV 1244

) puV +nzp ) . puW + ¢:p
F=J1Y pvV+nep |, G=J" pvW +¢yp . (3.7)
pwV +n,p pwW + ¢ p
(e+p)V —mp (e + P)W - &ip

and

U= Et + &zu + ﬁyv + fzw

V =+ nu+ nyv + nw (3.8)

W =y¢ +¢u + $yv + Cw
where U, V,and W are contravariant velocity components written without metric
normalization. The viscous flux terms are given by

. 0 1

. E2Tzz + &y'rxy + €27z
E,=J 'Re! EeTyz + EyTyy T &2Tyz | >
£2Toz + gysz + €272z
L 61,32 + fyﬂy + gzﬂz J

— 0 -
R NeTzz + NyTzy + N2Tzz
Fl/ - J_IRC—I nzTy:z; + nyTyy + TIZTyZ ] (3'9)

NzTzz + NyTzy + NaTzz
L 0282 + nyBy + 1282 -
0

. e CzTzz T SyTay T C2Tzz
G, =J "Re CzTyz + SyTyy + C2Tyz
gITZ:B + gysz + gZTZZ
$zBz + SyBy + $=B-
where the components of the shear-stress tensor and heat-flux vector in nondi-
mensional form were given in (3.3). Here, the Cartesian derivatives are expanded
in &, n, ¢ space via chain-rule relations such as

Uz = §zu§ + NzUny + SzUc

Finally, the metric terms are obtained from chain-rule expansion of z¢, y,, etc.,
and solved for &;, £, etc., to give

£z = J(ynzs — Yc2n) ne = J(zey, — Yeze)

£y = J(znz; — Tn2() ny = J(zez; — To2¢)

€= J(Tgye —ynzs)  m2=J(yex, — Tey) (3.10)
¢:=J(Yezn — 2eyn) &= —z:& — Yy — 2.6z '
¢y=J(Tnze —Te2n) M= - TNz Yoy — 2eM2

= J(Teyn —YeTn) Gt = ~Telr — YrSy — 2r$z

30



and
Il = Teypze + Toyez, + TnYe2¢ — TeYeRny — Tp¥e2¢ — TeYn2¢

3.2.2 Thin-Layer Approximation

In high Reynolds number flows, the viscous effects are confined to a thin layer
near rigid boundaries. In most cases, there are only enough grid points to resolve
the gradients normal to the body by clustering the grid in the normal direction,
and resolution along the body is similar to what is needed in inviscid flow. As a
result, even though the full derivatives are retained in the equations, the gradients
along the body are not resolved unless the streamwise and circumferential grid
spacings are sufficiently small. Hence, for many Navier-Stokes computations,
the viscous derivatives along the body are dropped. This leads to the thin-layer
Navier-Stokes equations.

The thin-layer model requires a boundary layer type coordinate system. In
our case, the £ and 7n directions are along the body and the viscous derivatives
associated with these directions are dropped, whereas the terms in ¢ are retained
and the body surface is mapped onto a constant ¢ surface. Thus, Eq. (3.6)
simplifies to

8,Q + 8¢k + 8,F + 9,G = Re™ 19, S (3.11)

where

w(s? + 8'3 + ¢D)ug + (1/3)(szus + Gyve + 2w )<a
u(c?+ 8’3 + ¢2)og + (1/3) (2t + Syve + Cawg)sy
§=J70 | mles + ¢+ sDhws + (1/3)(6atg + gyvc + Gwg)ss (3.12)
{(¢2 + ¢5 + ¢D0Bu(u® + v* + w?),

+uPrty = 1) Ha?),] + (1/3)(s2u + gyv + ¢aw)

L X (ug + ¢yve + Czwe )} )

It should be emphasized that the thin-layer approximation is valid only for high
Reynolds number flows. Also, very large turbulent eddy viscosities invalidate the
model.

3.3 Numerical Method

The finite-difference schemes used are the implicit approximate factorization
algorithm in delta form by Beam and Warming [63] and a diagonal implicit
algorithm by Pulliam and Chaussee [64]. Implicit methods are chosen to avoid
the time-step restriction when small grid spacing is used. When spatial resolution
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of large gradients such as that associated with shock waves or viscous effects are
needed, highly refined grids are required. These requirements yield stiff problems
which in turn restrict the time step to very small values. Implicit methods are
useful in avoiding such stiffness, and large time steps compared to those of explicit
schemes can be used without degrading accuracy.

3.3.1 Beam-Warming Block ADI Algorithm

The basic Beam-Warming algorithm is first- or second-order accurate in
time and second- or fourth-order accurate in space. The equations are factored
(spatially split) which, for a given time iteration, reduces the process to three
one-dimensional problems. Due to the second-order central-difference operators
employed, the algorithm produces block tridiagonal systems for each spatial di-
mension. The stability and accuracy of the numerical algorithm is described by
Beam and Warming [63]. According to the linear analysis, the numerical scheme
is unconditionally stable in two dimensions but in actual practice time step lim-
its are encountered because of the nonlinear nature of the equations. However,
this limitation is much less stringent than comparable explicit schemes. In three
dimensions the algorithm is unconditionally unstable, but stability is maintained
by the addition of artificial dissipation terms.

The finite-difference algorithm due to Beam and Warming applied to (3.11)
results in the following approximate factorization:

(I +h6eA™ + D) (I + k6, B™ + D{P)x
(I +h6.C™ — hRe™ 6.0 'M"J + DPYAQ™ = R" (3.13)
= —AT(6cE™ + 6,F™ + 6,G™ ~ Re™'6.8™) — DMIQ™

where 6 is the central-difference operator and /\ and V are forward and backward-

difference operators, e.g.

8:0 = [Q(E + AEmyc) — Q(E— A& m,¢))/20¢
£eQ = |Q(E+ AEn,¢) — Q(&,n,¢)|/ L€ (3.14)
VeQ = [Q(&,m,¢) — Q(E — A&, n,¢)]/ A

Indices denoting spatial location are suppressed and h = /A7 corresponds to first-
order time-accurate Euler Implicit and h = A7/2 to second-order time-accurate

Trapezoidal Rule. Déz), D£,2) and Dgz) are the implicit and D£4) is the explicit
smoothing operator which will be explained later, in Section (3.4).

The Jacobian matrices A", B™ and C™ are obtained by linearizing the flux
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vectors E’", F™ and G™ in time such that
Entl = EAvn+fin(QAn+l _ Q‘n) +O(A72)
Frtl = fr g BHQ™ - QM) +0(ar?) (3.15)
GrH = Gn 4 EMO™H - O™) + 0(ATY)

where indices denoting spatial location are suppressed again and

- 8E . 9F . 4G
A= -—, B=—, C=—.

oQ oQ 0Q
are the flux jacobian matrices. These flux jacobians and the viscous coefficient
matrix M, which comes from the time linearization of the viscous vector ™!,

are documented in Appendix A.

(3.16)

3.3.2 Pulliam-Chaussee Diagonal ADI Algorithm

Block tridiagonal-matrix inversions constitute the major portion of numeri-
cal work associated with the standard Beam-Warming algorithm. Equations (3.6)
are a coupled set of 5 equations and thereby produce a (5 x 5) block-tridiagonal
structure for the implicit operators of Eqs. (3.13). The diagonal version of the
standard algorithm due to Pulliam and Chaussee |64 overcomes this difficulty.
In this algorithm, rather than inverting block-tridiagonal matrices in each direc-

tion, scalar pentadiagonal matrices are inverted. This is computationally more
efficient.

The Jacobian matrices, /i, B and C have a set of eigenvalues and a complete

set of distinct eigenvectors. Similarity transformations can be used to diagonalize
A, B and C,

A=TAT;', B=T,A,T;', C=TAT (3.17)

where

>

¢= DU, UUU +c(€2+ €1+ €22 U — c(€2 + €2 + €117
A, = DIV,V,V,V +¢(n? + 77: +0H)Y2V —c(n? + na+ n2)1/? (3.18)

z

A = DIW,W,W,W + c(s2 + ¢2+ c2)V2W ~ ¢(¢2+ 2+ ¢5)V/?

where c is the speed of sound (c? = yp/p), and for example ;\5 reads as

U 0 0 0 0
0 U o 0 0
Ae=]0 0 U 0 0 (3.19)
0 0 0 U-+e(ed+¢e2+¢2)Y2 0
0 0 o 0 U—c(€2+ €2+ €2)1/2
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The similarity transformation matrices T¢, Ty, T, and their inverse matrices
are given in Appendix B. Relations exist between T¢, T,, and T, of the form

N=T'T, ,N'=T,'T,, P=T,'T, P =TT, (3.20)

where
my ma ma Y MMy
—ma2 my my pumsa —pmsg
Tk_lTl = | -mg —my m —pumo umo (3.21)
umg —pmz  pmz  pi(l+my) wpi(l-m)
—pm4  pms  —pmg pi(l-my) p?(1+my)

gk, u=1V2

After applying the similarity transformations of (3.17) and identities (3.20) in
Eq.(3.13) and exchanging the smoothing operators with new ones, the diagonal
form of the standard algorithm reads

Te(I + héche — hDi|)N(I + héyA, — hD,[,,)

(3.22)
P(I + hégAg — hDyl) g'lAQ

The spatial accuracy of the standard and diagonalized algorithms for steady-state
problems A(i.e. AQ™® > 0asn — oo) is determined by the type of differencing in
forming R™. Since the modification that produces the diagonal algorithm does
not effect R™, both schemes will have the same steady-state solution assuming
that the steady-state solution is independent of the convergence path i.e., that
the steady state is unique. For constant coefficient matrices A, B and C, the
diagonal algorithm reduces to the standard algorithm because the eigenvector
matrices are also constant. Therefore, the linear stability analysis of Beam and
Warming [63] also holds for the diagonal algorithm.

By numerical experimentation with the TNS code using both schemes, it was
found that the diagonal algorithm performs much better in terms of convergence
rates (see Flores [65]). To further enhance the convergence rate, two spatially
varying A7 schemes have been used.

Atref
Ar = —ref
i A'l’ﬂ.(]..’l.'
and A
Ar = Dlref (3.23)

1+J
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where J is the Jacobian of the coordinate transformation, A,z is the maximum
eigenvalue of the flux jacobians A, B and C, and At,ef is a reference time step.

The latter time stepping scheme proved to be better and was used throughout
this study.

3.4 Boundary Conditions

Since the finite-difference scheme used in the TNS code is implicit, it might
be expected that the boundary conditions would also be implicit. But the imple-
mentation of the implicit boundary conditions necessitates a modification of the
inversion matrices which is not very practical. Moreover, past experience is such
that explicit boundary conditions have been successfully employed in conjunc-
tion with the implicit codes. Also, explicit treatment of the boundaries leads to
a simple and flexible scheme. Boundary conditions become a modular element
that can be put in or pulled out of a computer program without touching the
heart of the implicit code.

Unknown values of Q on the boundaries are updated explicitly, and this
leads to a zeroth-order time extrapolation. The space extrapolations are either
zeroth order or first order according to the physical and geometric constraints.
Since in the TNS code a zonal approach is employed, there are two types of
boundaries at which conditions must be specified: 1) the physical boundaries
such as inflow, outflow, and body surface, and, 2) the zonal boundaries where
“zones” are patched together. Treatment of zonal boundaries was presented in
Chapter 2.

At the farfield boundaries, free-stream values are specified. This is shown
in Fig. 12. At the upper boundary DC, lower boundary AB, side boundary EF,
and inflow boundary AD, the conditions are free-stream, i.e., Q = Qm. The con-
ditions at the outflow boundary are found by a zeroth-order extrapolation from
the last plane such that QJMAX = QJMAX_]. The symmetry plane bound-
ary conditions are more complicated: Here a zeroth-order space extrapolation is
used for the density. A first-order extrapolation is employed for the x-direction
Cartesian velocity component v and z-direction Cartesian velocity component
w, while the spanwise y-direction Cartesian velocity component v is set equal
to zero to force symmetry. Pressure is also found by a first-order extrapolation
and the total energy is computed using Eq. (3.4). At solid surfaces, the no-slip
boundary condition is employed for the three velocity components. Surface pres-
sure is found by using the boundary layer approximation dp/dn ~ 0 such that
p1 = p2 , where p; is the static pressure on the body surface, and p, is the static
pressure on the first computational surface off the body. The surface density is
found from an adiabatic wall assumption which yields p; = p,. Total energy is
computed using Eq. (3.4).
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3.5 Artificial Dissipation Models

The numerical solution of the Euler /Navier-Stokes equations for flows involv-
ing captured shock waves necessitates the use of numerical or artificial dissipation
either by using a scheme which is inherently dissipative or by using a nondissipa-
tive scheme with specially designed dissipative terms. The former class of schemes
employ some form of upwind differencing under the assumptions of characteristic
theory and wave propagation. The schemes due to Steger and Warming [67], Roe
|68], Van Leer [69], Osher and Chakravarty [70] and Harten’s TVD methods [71]
all fall in this category. In this class of schemes, the dissipation is automatically
included without user control. The basic ARC3D algorithm [62] used in the TNS
code is of the second variety and consists of a centrally-differenced nondissipative
scheme with user-controlled smoothing terms. The artificial dissipation is added
for two reasons; first to control the odd-even decoupling of grid points typical of
central differencing, and second to control strong nonlinear effects such as shocks.

It can be shown that upwind schemes are equivalent to central difference
schemes with added dissipation. Pulliam|72] demonstrates that adding a fourth-
difference dissipation to a central-difference scheme produces the equivalent of a
second-order upwind scheme, whereas the use of a second-difference dissipation
term produces a first-order upwind equivalent. There are different dissipation
models utilized in the block and diagonal algorithms described earlier in Sec.
(3.3).

The block algorithm which was given in Eq. (3.12) uses a constant coefficient
dissipation model. In this approach, an explicit fourth-difference dissipation

DMQ" = ‘eATJ_l[(VﬁAﬁ)z +(Valg)?+ (VgAg)zlJQn (3.24)

is added to the right-hand side of the equation and an implicit second-difference
dissipation
D](CZ) = _(iJ_IAkaJ, k = 6’ n,¢ (325)

is inserted into the respective implicit block operators. Based on linear stabil-
ity theory, the use of the explicit dissipation alone produces an explicit stability
bound. If the second-difference implicit dissipation is added, the algorithm be-
comes unconditionally stable if ¢; is sufficiently large (cf. Ref. [28]). The proce-
dure is to set €, = A7 and ¢; = 2¢, which results in a consistent definition of €,
such that as the time step increases, the amount of artificial dissipation added
relative to the spatial derivatives of convection and diffusion remains constant.
This is because all of the convection and diffusion terms in the approximate fac-
torization algorithm of the Eq. (3.13) are factored by the time step At. Instead
of second-difference implicit dissipation, using fourth-difference implicit dissi-
pation would improve convergence. However, this would require the inversion
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of extremely expensive block pentadiagonal matrices rather than the relatively
simple block tridiagonal matrices |72],(73].

The diagonal version of the implicit approximate factorization algorithm
due to Pulliam and Chaussee, which was described in Sec. (3.3), substantially
reduces this computational cost. The more appropriate fourth-difference dissipa-
tion terms can be added, and only require the inversion of scalar pentadiagonal
matrices as opposed to block pentadiagonal matrices in the block algorithm.
The diagonal algorithm was given by Eq. (3.22). The combination nonlinear
dissipation operators are included as follows:

_ _ 2
D;l¢ = VE("J‘+1,k,lJ,‘+11,k,1 + oj,k,l‘]j,kl,l)(f;, ),IAS - f;:‘k),zAﬁvﬁﬁs)J (3.26)

The terms for D;|, and D;|. have a similar form. The same dissipation model
has been implemented in the right-hand explicit side of the algorithm. Hence the
constant-coefficient fourth-difference dissipation operator D) in Eq. (3.13) is
replaced by a combination nonlinear dissipation operator

- — 2
Dele = Ve(oj o609 ki + Oiead; d )€ 0 — €49 AeVeA) T (3.27)

The dissipation operators defined by Eq. (3.24) and (3.25) include the metric
Jacobian J so that they act upon the unscaled Q and not on Q Hence the
dissipation is not directly influenced by the grid distribution because smooth
functions of @ may occur in regions of rapid mesh variation. This form of
smoothing operator is inspired by the recent work applying flux limiters to up-
wind schemes and TVD concepts which suggest that the best approach for an
upwind algorithm is to use locally first-order upwind differences at the shock
and second-order elsewhere|72|. This is accomplished by using switch operators
65,22 and 65-’4,3 which govern the type of smoothing, e.g. second-difference smooth-
ing near shocks and fourth-difference smoothing elsewhere. The term o, is a
spectral radius scaling which in three dimensions is defined as

05,k = U+ a\/fﬁ + &2+ &2

+ VI +ay/n2+nk+nk (3.28)
+ Wl +ay/Z+ei+¢2

and is a sum of the spectral radii of the flux jacobians 4, B and C. The interested
reader is referred to Pulliam [72] for a good review of this subject. The effect of
different smoothing models in the actual computations for the TNS code will be
presented in Section (4.3).
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3.6 Turbulence Model

Solving turbulent flows numerically is a very difficult task due to the extreme
time and space scales associated with turbulent motion. Hence, the main method
of approach in Computational Fluid Mechanics and Heat Transfer for solving
turbulent flows is through the Reynolds averaged Navier-Stokes equations. Time
or “Reynolds” averaging the equations of motion give rise to new terms which can
be interpreted as “apparent” stress gradients and heat flux quantities associated
with the turbulent motion. The apparent turbulent stresses in compressible flow
can be written as [74]

(Tij)turb = —lm:u;- (329)

and the apparent turbulent heat flux components as

3]
(V- Q)turt = — gg(pcpT’u;.) (3.30)
J

In order to predict turbulent flows by applying finite-difference methods to
the Reynolds equations, it is necessary to make assumptions for the terms in
Egs. (3.29) and (3.30). Boussinesq (1877) suggested that the apparent shearing
stresses might berelated to the rate of mean strain through an apparent turbulent
or “eddy” viscosity given in incompressible flow by

— Ju; OJu,
—pulu’ k 2 3.3
pUY, HT(axj + azi) (3.31)

Closure for the Reynolds heat flux-term, pc,,m; is treated in algebraic models
by a form of Reynolds analogy. The Reynolds analogy is based on the similar-
ity between the transport of heat and momentum and applied to the apparent
turbulent conductivity in the assumed Boussinesq form

— oT
pepT'ul = —icTé; (3.32)
j

Experiments reveal that the ratio of the diffusivities for the turbulent transport
of heat and momentum which is called the turbulent Prandtl number, Pry =
prcp/kT , is a well-behaved function across the flow and in algebraic models is
generally taken to be 0.9. Using the turbulent Prandtl number, the turbulent
heat flux is related to the turbulent viscosity and mean flow variables as

— oT
—pe, T, = PHT O1 3.33
pCP u] PTT ax] ( )

38



Hence, in large scale Navier-Stokes computations an accurate and compu-
tationally efficient method of computing eddy coefficients is needed. Since the
algebraic eddy viscosity models proved to be fairly accurate and computationally
efficient, the Baldwin-Lomax algebraic eddy viscosity model [29] is utilized here.
In the Baldwin-Lomax model the effects of turbulence are simulated by replac-
ing the molecular coefficient of viscosity uas with the effective viscosity pas + pr
in the stress terms of the laminar Navier-Stokes equations. In heat flux terms
k/c, = p/Pr is replaced by u/Pr+ pr/Prr.

The Baldwin-Lomax model is a two-layer algebraic model in which p7 is
given by

(3.34)

ur = (#T)inner’ Yy S Yerossover
(ﬂT)outera Y > Ycrossover

where y is the normal distance from the wall and y.,;scover is the smallest value of
y at which values from the inner and outer formulas are equal. The eddy viscosity
coefficient in the inner layer is based on the Prandtl mixing-length theory

(/‘T)tnner = PZ2| w ] (335)

The parameter £ is the mixing length corrected with the Van Driest damping
factor to account for the laminar sublayer

C=kyll—ezp(-y*/AT)] (3.36)

where k = 0.4, A* = 26, and |w| is the magnitude of the vorticity given by

wl = y/luy — )2 + (02 — wy)? + (w, - u,)?2 (3.37)

and
+_ Pwlrsy  /PwTul

Hw My

Yy (3.38)

The eddy viscosity coefficient in the outer layer is based on the distribution of
vorticity which is used to determine the length scale and is given by

(kr)outer = K Copp FwakeFkLeB(Y) (3.39)

where K = 0.0168 is the Clauser constant and C-p = 1.6 is an additional
constant. Fy 4 kg is found via

YmazFmaz
FWAKE = min or (3.40)
CWK ymazu%IF/Fma::
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where Cw g = 0.25 and
/T 5 . o /o 5 . o
upir = (Vu? + v2 + 0¥ maz — (VU2 + 07 + w?)yin (3.41)

In Eq. (3.41) the second term is taken to be zero (except in wakes). The quan-
tities Ymaz and Fp.q. are determined from the function

F(y) = ylw]|[l - exp(~-yT/AT)] (3.42)

In wakes the exponential term is set equal to zero. The quantity Fye: is the
maximum value of F(y) that occurs in the profile and ymqz is the value of y at
which F,,,, occurs. The function Fgpgp is the Klebanoff intermittency factor
given by

Frresly) = [1 + 5.5( (3.43)

CKLEBy>G} -
YMAX

and Cxrep = 0.3.

Although not seen explicitly, the Reynolds number enters into the compu-
tation of eddy viscosity through the computation of y*. When the variables in
Eq. (3.38) are nondimensionalized, the following expression is obtained:

— Y (3.44)

In high Reynolds number flows, as Re — oo, the length scales / and F(y) in the
inner and outer layers go to zero, which result in vanishing values of ur. For
more discussion on the Baldwin-Lomax turbulence model, the reader is referred
to the original paper |29].

3.7 Computational Aspects of the Zonal Algorithm

So far the building blocks of the TNS program were presented: namely,
the zonal algorithm, related data management and the numerical methods and
flow models. It is very important to explore the characteristics of this code if
it is intended to be used in routine flow simulations. The speed, convergence
characteristics, efficiency and reliability of the code must be assessed.

The convergence rate of the diagonal version of the code (see Sec. 3.3.2)
versus the block (standard) version (see Sec. 3.3.1) is shown in Fig. 13 (see Ref.
[65]). The geometry used in this simulation was a NACA 0012 wing (see Fig. 9).
The free-stream flow conditions were M., = 0.826, a = 2° with a Reynolds
number based on chord of 8 million. This is a moderately difficult case involving
a strong shock with a moderate amount of separation. In Fig. 13, the abscissa
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denotes the number of iterations for the algorithm, and the ordinate denotes the
L2-norm of the residual. The time step used in the block version was At = 0.004,
where a unit time interval denotes the time required by a particle moving at the
free-stream speed of sound to travel one chord length. This was the largest
time-step possible while still maintaining stability of the code.

The diagonal version used a variable time-step (see Eq. 3.23) and thus
received convergence accelereration from this aspect. However, despite this, the
main speed-up associated with the diagonal algorithm is not due to the variable
time-stepping alone, but the variable time-step coupled with the correct implicit
treatment of the numerical dissipation terms. Pulliam and Steger [73] reported
that the variable time-step had often worked poorly in viscous flow until the
second-order implicit dissipation terms were replaced by the fourth-order terms
which are consistent with the fourth-order explicit dissipation of the right-hand
side of the algorithm (see Egs. 3.26 and 3.27). The same replacement is, of
course, possible in the block algorithm, but would necessitate the inversion of
expensive block pentadiagonal matrices.

The slow rate of convergence associated with the block scheme seems to occur
in the outer zones. The viscous-zone block-scheme residual drops rapidly during
the first 1000 iterations but then flattens out. At 5000 iterations, the residuals
associated with all zones have dropped by about one to two orders of magnitude.
In contrast, the convergence rate of the diagonal scheme drops rapidly in all
zones. A three-order of magnitude drop in the L2-norm for a 150,000 grid point
mesh occurs in 500 iterations which costs 2450 seconds of CPU time. This is
equivalent to 4.9 seconds of CPU time per iteration and 3 x 10~ % seconds of
CPU time per grid point per iteration. The convergence rate of the diagonal
algorithm is nearly 40 times that of the original block algorithm. This is due to
the proper linearization of the dissipation terms and variable time stepping as
stated earlier, coupled with the decrease in arithmetic operation count owing to
the diagonal algorithm.

The convergence characteristics of the algorithms as discussed above and
other computational aspects of the TNS code were thoroughly explored by Flores
(65]. It was concluded that: 1) although convergence rates are vastly different
for different algorithms, the solution at steady state is not affected, 2) the use
of explicit boundary conditions at zonal boundaries has no detrimental effect
on the convergence characteristics of the algorithms, 3) there was no noticeable
improvement in the convergence rate as a result of changing the extent of overlap
between zones, and 4) use of different CFL values in different zones increases the
convergence rate by 10-20%.

Data management of large application codes is an important issue which
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must be handled carefully. Memory, speed and I/O(input/output) requirements
of the TNS code are quite substantial. The key element for handling the memory
and I/O requirements of the TNS code is the SSD (Solid State Device) of the
NASA Ames Cray X-MP (see Sec. 2.4). The SSD has 16 million 64-bit words
of memory. It will be instructive to give some statistics about how this code
performs in actual situations, and in particular, how the data management of
the metrics was achieved.

To exploit the ADI character of the flow solver algorithm, which necessitates
implicit sweeps in all three directions, the metrics are transferred from SSD into
main memory with three different orientations: z—y planes, z—z planes, and y—z
planes. Hence, there are three different copies of the metrics stored on the SSD
corresponding to the three different orientations, which is not a problem because
of the ample storage space in the SSD. However, the number of grid points for
an adequate grid resolution is still limited by the capacity of the main memory
(1 million 64-bit words on Cray X-MP). Each of the metric arrays is required in
main memory several times for each grid zone during each iteration. This places
extreme demands on I/O requirements. Nevertheless, the SSD handles these
/O requirements without a problem. The computational statistics displayed in
Table 2 demonstrate this for two cases (Mo, — 0.80 and 0.95 and Re = 8 x 107,
a = 5°). The grid used for both calculations is similar to that presented in
Fig. 8 and consists of four zones with a total of 166,621 grid points. As seen
from Table 2, the higher Mach number case converges more slowly than the
lower Mach number case. This is not surprising, since the Mo, = 0.80 case is
only moderately separated and the My, = 0.95 case is massively separated. To
advance a typical interior grid point in the TNS program one time level requires
approximately 2030 floating point operations. Thus, for the cases displayed in
Table 2, the TNS program execution rate on the Cray X-MP computer is about
63 MFLOPS (million floating point operations per second).

From the statistics in Table 2, the efficiency level associated with the SSD
1/0 is quantitatively established. During the Mo, = 0.95 case, the program
transfers almoést 24 billion 64-bit words between the SSD and main memory
using about a quarter of a million read/write requests. The 1/0O time charge for
this case is just over two minutes. The estimated 1/O time charge for this case,
assuming disk is used to replace the SSD, is over 24 hours. (Because the I/O
utilized in the TNS program is asynchronous, these 1/O time charges represent
only that portion of the I/O time that was not “covered up” by the CPU during

execution.) For a detailed survey of the computational aspects of the TNS code,
please refer to Ref. {75].
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Table 2. Computational Statistics from the TNS Program

(NACA 0012 wing, Re. = 8 x 107, AR = 3.0, TR = 1.0, A = 20°)

Quantity Mo = 0.80 Mo = 0.95
Iterations” 825 1890
CPU Time (Hrs) 1.25 2.82
Read/Write Requests (Memory/SSD) 110550 253260
64-Bit Words Transferred (MWDS) 10391 23806
SSD 1/0 Time (Sec) 61.5 140.8
Estimated Disk 1/O Time (Hrs) 10.7 244

(If disk had been used in place of SSD)

"Avg residual reduced three orders of magnitude (all grid zones).
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CHAPTER 4

SIMULATION OF WING FLOW FIELDS

4.1 Introduction

Understanding the nature of separated flows is important for an aircraft
designer. If the aerodynamic design of a flight vehicle with flow separation is to be
successful over the full range of flight conditions, the vehicle must be controllable
at all times and possess no rapid changes in force and moment characteristics.
Lifting surfaces such as wings, canards, strakes, etc., play an important role in
the design process. Accounting for separated flows about these surfaces is one
of the most crucial tasks of the aerodynamic design. Designers either want to
reduce the adverse effects of separation, or exploit separation for useful purposes.
The latter, for instance, is the case for a rolled-up vortex sheet from the sharp
leading edge of a delta wing or a strake of a fighter aircraft, in which case the
vortex provides so-called “nonlinear lift.”

Our present understanding of three-dimensional separation about wings
comes principally from flow visualization experiments with surface-oil techniques
in wind tunnels, smoke tunnels, and dye flow in water tunnels. However, there
have also been some attempts to compute separated flows on wings in recent
years. Numerical simulations of the leading edge vortex phenomenon associated
with a delta wing have been made using potential flow procedures such as panel
methods or vortex lattice methods [76],(77]. Other researchers have used the
Euler equations to solve the same problem [78],(79],[80],{81]. For a discussion
about the prediction of separation, which is a viscous phenomenon, using the
Euler equations, see Ref. [82].

Another technique used in the computation of separated flows is based on
viscous-inviscid interaction methods (see Sec. 1.2). These methods are quite
appropriate for computing mild separations but, at present, tend to break down
for large streamwise separations. Some progress has been made on computing
turbulent flows over wings primarily using integral boundary layer schemes, but
these schemes cannot easily compute separated flows [42],[43],(44].

Because of the shortcomings of the methods described in the previous para-
graph, the Navier-Stokes equations seem to be the proper model equations for
computing massively separated flows on wings [40|. This line of research is quite
recent, with only a few publications on the subject. The computation of the
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supersonic flow over a blunt delta wing by Vigneron et al. {83], the leading-edge
separation vortex over a delta wing at high angle of attack by Fujii and Kutler
139], and the simulation of a tip vortex off a low-aspect-ratio wing at a transonic
speed by Mansour [34] are a few examples. Also very recently, transonic wing
solutions have emerged due to Agarwal and Deese [37], Vadyak [84] and Holst et
al. [45].

In this chapter, the computational aspects of the TNS zonal algorithm are
presented, and then the mathematical and topological considerations of separated
flows will be discussed to better understand them. After this, the impact of the
artificial dissipation and turbulence models on separated flow will be demon-
strated. Finally, the simulation of two low-aspect-ratio wings will be presented
and comparisons will be made where data are present.

4.2 Mathematical and Topological Considerations
4.2.1 Background

The character of a flow near a surface, to a large extent, can be inferred
from the surface pattern or “skin-friction lines” which are the lines everywhere
parallel to the wall shear stress vectors. The pattern of skin friction lines can
often be approximately determined by the experimental oil-flow technique [85].
However, the thickness of the oil film plays an important role in the appearance
of the resulting oil-flow pattern. If the film is thick and accumulates in certain
regions of the surface. it may lead to misconceptions (private communication
with Dean Chapman, 1984).

Although the definition of separation and reattachment is well established
in two-dimensional steady flows by the existence of a reverse flow, a straight-
forward extrapolation of two-dimensional concepts to three-dimensional flows is
not possible. In three-dimensions. the meaning of the term “reverse” becomes
ambigious. Our present understanding of three-dimensional separation stems
essentially from flow-visualization experiments. If, for instance, a surface oil-
flow technique is used, Tobak and Peake {86 indicate that the convergence of
oil-streaks onto a particular line is a necessary condition for three-dimensional
separation. But, whether this is also a sufficient condition is a topic of current
debate.

Maskell [87] discussed the global structure of three-dimensional flows in qual-
itative terms, calling the pattern of limiting streamlines (the streamlines very
close to the surface which lie closely along the skin-friction lines) the “skeleton”
of the entire flow field. A precise mathematical framework to conceptualize the
pattern of “limiting streamlines” was proposed by Legendre (88| in which the
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limiting streamlines were considered to possess the properties of a continuous
vector field. One principal property is that only one limiting streamline can pass
through a regular (that is, nonsingular) point in the flow field. On the basis
of this hypothesis, the elementary singular points of the field can be categorized
mathematically (see Sec. 4.2.2). Then, the types of singular points, their number
and the rules governing the relations between them can be said to characterize
the pattern.

In this context, three-dimensional separation has been defined by the con-
vergence of skin-friction lines onto a particular skin-friction line that originates
from a singular point of particular type, the saddle point [85],(86]. However,
this may not be the only possibility. Under given circumstances, it appears
that a separation line may also emanate from a nodal-type singular point [86].
The issue was clarified more concisely by Lighthill [85] by tying the postulate
of a continuous vector field to the pattern of skin-friction lines on the three-
dimensional body rather than to the limiting streamlines just above the surface.
There are two advantages to working with the skin-friction lines: 1) they are
defined uniquely everywhere on the surface, even in the vicinity of lines of sep-
aration, which are themselves skin-friction lines, and 2) with skin-friction lines
being defined uniquely everywhere on the surface, the pattern of skin-friction
lines can be viewed as a continuous vector field.

4.2.2 Mathematical Foundations for the Skin-Friction Field

In order to examine the conditions for separation and behaviour of critical
points, it is necessary to consider the wall shear stress field. Skin-friction lines are
defined as the integral curves of the wall shear stress vector exerted by the fluid on
the wall. If at any point the wall shear stress vanishes, the field possesses a saddle
or a nodal point, at which the skin-friction lines’ directions are indeterminate.
The “phase-plane” and “phase-space” methods of exploring the properties of
solutions of ordinary differential equations have proved to be extremely successful
in the field of nonlinear dynamical systems. Oswatitsch [89], and Lighthill [85]
examined viscous flow patterns close to a rigid boundary and classified certain
classical points which can occur. They used a mathematics which is equivalent
to the phase-plane trajectory analysis. Also Perry and Fairlie [90] and Hornung
and Perry [91] applied these techniques to fluid flow problems. The following
analysis outlines the mathematical procedure for the topography of skin-friction
lines and critical points. In the analysis, cartesian coordinates are assumed for
demonstration purposes, however the same conclusions could be drawn if the
curvilinear coordinates were used.
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The system of equations for particle paths in a steady flow is given by

(2—:: = u(z,y, 2)
dg:;{ = v(z’ysz) (41)
 —wiz,y,2)

where z,y, and z are Cartesian coordinates and u,v, and w are the Cartesian
velocity components along z,y, and z respectively (see Fig. 14). The skin-friction
lines, or limiting streamlines, are obtained by exploring the limiting behavior of
Egs. (4.1). But because of the no-slip boundary condition at the wall, Egs. (4.1)
are trivial (i.e. v = v = w = 0, as z — 0). At this point, it is helpful to introduce
a pseduo-time d7 such as

dr = zdt (4.2)
Rewriting, Egs. (4.1) yield

. dr u
r= — = —
dr z
dy v

Rt A 4.3

y dr z (4:3)
.o dz w
2= — = -—
dr z

It is necessary to analyze the limiting behavior of the shear-stress tensor given in
Eq. (3.3). At the surface, the following conditions for the velocity components
and their derivatives hold:

u=v=w=~0

(4.4)
Uzg = Uy =V = Vy =Wy = Wy =0
but from the continuity equation, w, = 0 also. Hence Eqs. (3.3) reduce to
Tee = Tyy = Tzz = Tzy =0
Jdu
Tez = ﬂv& (45)
- ov
yz Naz

Taking the limits as z — O for the last two of the preceeding equations yields

u Tzz

— = Z=F _ f(x,y)

z Iz

v 1, (4.6)
s —“- = g(x,y)
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or

u T,
- = — 4.7
;. (4.7)
in which u = (u,v)T, Tw = (ru,'ryz)T where the superscript T denotes the

transpose of a matrix, and f(z,y) and g(r,y) are nonlinear functions.

It is assumed that, for steady flow of an incompressible Newtonian fluid with
constant viscosity at finite Reynolds number over a smooth continuous wall, the
velocity and pressure are regular, so that local solutions can be written as Taylor
series expansions in the space coordinates. The mathematical support for this
assumption is discussed by Ladyzhenskaya [92]. Eq. (4.7) reveals that the vector
quantity u/z is equal to 7,,/u, and the vector field u/z has the same integral
curves as the wall shear stress; i.e., the skin-friction lines. When u/z is expanded
into a Taylor series about the critical point, and only the lowest order terms are
retained, the following linear system of first-order ordinary differential equations

is obtained: _ .
AR “2

x=F-x (4.9)

or

The matrix F of Eq. (4.9) has eigenvalues A, and A, which may in general be
real or complex. The corresponding eigenvector slopes are

my = (A —a)/b=c/(A — d)

ma — (/\2 — a)/b o c/(,\2 _ d) (410)

which, for the case of Ay and A, real, may be shown to correspond to the slopes
of certain trajectories which emanate from the critical points.

There is just one skin-friction line through each point on a surface, except for
a point of separation or attachment, where 7,, = 0. These points are the singular
points of the differential equations governing the topography of the skin-friction
lines. Such singular points are classified (see Kaplan |93]) depending on the
values of the following quantities:

p=—(a+d) = —traceF

4.11
g = (ad — bc) = det F (4.11)

and )
Ap==2pF (r" - 49)"% (4.12)

The classification of possible critical points is shown in Fig. 15 from Ref. [90]. A
singular point where ¢ < 0 is a “saddle point”; a point where ¢ > 0, however, is
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a “nodal point.” A nodal point (Fig. 15a) is a point where all of the skin-friction
lines except one (labeled AA in Fig. 15) are tangential to a single line BB. A
focus (Fig. 15b) differs from a nodal point in that it has no common tangent
line. An infinite number of lines spiral around the singular point, either away
from it (a focus of attachment) or into it (a focus of separation). At a saddle
point (Fig. 15¢), only two particular lines, CC and DD, pass through the singular
point. The flow directions on opposing sides of the singular point are inward on
onc particular line and outward on the other line. All of the other lines pass
by the singular point in directions consistent with the directions of the adjacent
particular lines. Critical points corresponding to values of p and ¢ along the axes
(p = 0 and/or ¢ = 0) and on the parabola p = 4 ¢* are “degenerate” forms.

4.2.3 Topography of Skin Friction Lines

Singular points have certain characteristics that largely determine the dis-
tribution of skin-friction lines on the surface. The nodal point of attachment is
typically a stagnation point on the forward face of the body, where the free-stream
attaches itself to the surface. Hence the nodal point of attachment behaves like
a source from which the skin-friction lines issue and circumscribe the body. The
nodal point of separation, however, behaves like a sink where the skin-friction
lines on the body surface terminate. In other words, this is the rear stagnation
point of the body. The saddle point acts typically to divide the skin-friction
lines issuing from these nodes. The total number of singular points for a possible
pattern on a smooth surface is subject to a topological rule that the number of
nodal points must exceed the number of saddle points by 2 (see Kaplan [93]). A
physical explanation for this is due to Lighthill [85]: since there are infinite num-
ber of skin-friction lines on the surface, and they must begin and end somewhere,
there is at least one nodal point of attachment and one nodal point of separation.
If there are two nodal points of attachment, however, the skin-friction lines from
each node must somewhere run into each other; this necessitates an introduction
of a saddle point in between them.

Figure 16 shows such a combination of two nodal points of attachment and
one saddle point of separation. If there are n nodal points of attachment, there
will be (n — 1) saddle points accordingly. Hence the whole combination is equiv-
alent to a single node of attachment which behaves like a “source” as explained
before. Similarly, m nodal points of separation and (m — 1) saddle points behave
like a “sink” into which the skin-friction lines emanating from the “source” van-
ish. Therefore, there are (m + n) nodal points and (m + n — 2) saddle points, and
the topological law is satisfied. A particular skin-friction line emerging from a
saddle point prevents the lines from the nodal points of attachment from crossing
each other. This particular skin-friction line is called a line of separation. Skin-
friction lines from either side asymptotically converge on the line of separation.
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Hence, it is possible to define the line of separation as a particular skin-friction
line toward which other skin-friction lines converge rapidly (in an asymptotic
manner, but not a cusp-like manner, c.f. [85,(90]); conversely, a line of reattach-
ment is defined as a particular line from which other skin-friction lines diverge
rapidly. It should be kept in mind that this definition is associated with the

necessary condition of the separation. Whether it is also sufficient is a matter of
current debate |86).

In the vicinity of the line of separation, the limiting streamline must leave
the surface. This can be shown as follows: at a very small distance z from the
surface the velocity was found in Eq. (4.7)

Continuity must be satisfied in a streamtube, for which the volume flow rate M
is expressed as

M = zd% = const. (4.13)
where d is the distance between the streamlines and ¢ = |u|. From Eq. (4.7)

1
9= ETw (4.14)

where 7, = [ 7, |. From Egs. (4.13) and (4.14)

z (drw)_l/2 (4.15)

Hence, the height of the limiting streamline z above the surface grows rapidly
as the line of separation is approached. According to Eq. (4.15), the mechanism
which causes the limiting streamlines to leave the surface is twofold: first, the
resultant skin-friction 7,, becomes vanishingly small near the saddle point, and
second, the distance d between the adjacent limiting streamlines, falls rapidly as
the limiting streamlines converge toward the line of separation.

In the remaining parts of this section, a series of attached and separated
flow computations will be presented. The methodology of studying these flows
will be from three points of view: 1) the actual phenomena (i.e., the experi-
mental flow pictures), 2) the “conceptualization” or the “postulation” of these
pictures in light of topological laws and rules, and 3) the computations. In any
kind of interpretation, these three topics must support each other to provide a
plausible explanation. The surface phenomenon is very important because the
three-dimensional flow field above the surface depends on the surface flow. For
instance, three-dimensional stream surfaces emerge from the separation lines,
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whereas rolled-up vortex sheets emanate from spiral separation nodes, i.e. the
foci on the surface. However, the three-dimensional separation phenomenon is
very complex and a given surface pattern can produce many three-dimensional
flow patterns depending upon interpretation. Dallmann [94] explains with exam-
ples that there is no unique relationship between the pattern of wall streamlines
and the flow field above the wall. He adds that topologically different flow fields
may exhibit the same oil-flow picture.

4.3 Effects of Artificial Dissipation and Turbulence Models

Turbulence and artificial dissipation models play crucial roles in the simu-
lation of separated flows and shock/boundary layer interactions. Since there is
an intimate relation between the skin friction field and flow separation, correct
computation of boundary layers is very important. In order to assess the relative
effects of these models on the boundary layer characteristics, a series of test cases
has been computed for attached and shock-induced separated flows.

4.3.1 Effects of Artificial Dissipation

The impacts of artificial dissipation schemes are firstly investigated for an
attached airfoil flow. The test case consists of a two-dimensional flow around a
NACA 0012 airfoil at M., = 0.5, Re - 2.89x 10° and a = 0°. The TNS program
was run for a very large aspect ratio wing making the flow at the symmetry plane
essentially two-dimensional. The computed and experimental pressure coefficent
distributions are compared in Fig. 17. The experimental data is taken from
Thibert et al. Ref. [95]. The agreement for this admittedly easy case is very
good in terms of pressure.

In Fig. 18, the turbulent boundary layer profiles computed by TNS, using
different smoothing models and algorithms, are compared with those of an an-
other CFD code, called TRIVIA. Ideally, the computed boundary layer profiles
should be compared with the experimental ones. However, this is not an easy
task because of the lack of experimental profile data. An alternative is to com-
pare the computed profiles against those of another “proven” CFD code. For
this purpose, the transonic airfoil interaction code of Steger and Van Dalsem
196], called “TRIVIA” was chosen. TRIVIA utilizes the same turbulence model
as TNS and proved to be very accurate for a fairly broad range of airfoil flow
conditions.

The y* values of the first grid points off the surface were about 1 or 2 for
TRIVIA and 2 or 4 for TNS. One remarkable feature of this comparison is that
although all methods give the same C,, distribution, the computed TNS boundary
layer profiles using the diagonal algorithm of Section 3.3.2 are significantly less
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full than either TRIVIA or TNS-block-algorithm boundary layer profiles. The
TNS diagonal algorithm utilizes a nonlinear artificial dissipation model, while
the block algorithm uses a constant coefficient artificial dissipation model. The
discrepancy between the results may be explained as follows: the amount of
artificial dissipation must be large enough to keep the algorithm stable, yet small
enough not to excessively damp the flow physics. The nonlinear smoothing used
in the diagonal algorithm was specifically designed for inviscid calculations |97].
Using this algorithm in Navier-Stokes calculations produces too much smoothing
in the boundary layer. This is because the spectral radius 0k, used in Eq.
(3.27) is in the order A¢™!, and since the normal grid spacing A\¢ is very small
in the viscous boundary layer, 0, x; becomes very large. This problem may be
resolved by forcing the artificial viscosity to zero near solid boundaries. The
nonlinear explicit smoothing terms of the diagonal algorithm given by Eq. (3.27)
is modified to

— - 2
D.|¢ = Vif(M)(‘71'+l,k,le+11,k,z+‘7j,k,le,kl,l)(fg,lz,zAﬁ—f]('?lz,lAﬁviAﬁ)J (4.16)

where
M2, for attached flows
7(M) = (4.17)
M, for separated flows

and M is the local Mach number. The suggested linear and quadratic variations
of Mach number depending upon the type of flow was found experimentally.
However, this reflects the fact that the amount of artificial dissipation in a sep-
arated flow should be larger than its counterpart in an attached flow. This is to
secure the numerical stability of the algorithm. Utilizing this concept proved to
be very helpful, as evidenced in Fig. 19 where the modified dissipation model
results compare favorably with the original TRIVIA results.

Since the modified smoothing algorithm changes the boundary layer, it is
expected that the skin-friction field, and consequently the separation character-
istics, will also change. Therefore, another test case was set up to simulate a
separated flow. The impact of the artificial dissipation, as well as the impact
of the turbulence model, will be investigated on this flow. This case involves
a transonic flow field about a NACA 0012 section wing with an aspect ratio of
3.0, a taper ratio of 1.0, 20° of sweep, a Reynolds number based on chord of 8
million, a free-stream Mach number of 0.826, and an angle of attack of 2°. The
solid wind tunnel walls, which are modeled in this calculation (see Fig. 8), are
slightly less than 2 chords above and below the wing. This case corresponds to
the experimental work of Lockman and Seegmiller |61}, and a comparison of the
numerical results with this experiment follows.
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The surface pressure coefficent distributions at three selected spanwise lo-
cations are compared in Fig. 20. It is seen that the free-air shock position is in
error by approximately 10% of chord, and inclusion of wind tunnel wall effects
has shifted the shock downstream, in good agreement with the experiment. Also,
the pressure plateau downstream of the shock, which signifies the shock induced
separation, was not reproduced due to the turbulence model. Note also that
general agreement between the wind tunnel simulation and experiment is better
inboard of mid-semispan than it is outboard.

The emphasis of this work is on flow separation. In Fig. 21, an oil flow
photograph taken from the experiment of Lockman and Seegmiller [61] shows
the complexity of the phenomenon. In order to analyze and comprehend the
separated flows, postulation of the skin friction lines is very helpful. The reader
is reminded that Maskell [87] called the skin-friction lines the “skeleton” of the
entire flow field (see Sec. 4.2.1). The author’s depiction of the skin friction lines
for the flow of Fig. 21 is presented in Fig. 22 to facilitate a possible correlation
between the oil flow photograph and the numerical simulations. The oil-flow
photograph displays a very interesting skin-friction map typical of transonic sep-
arated flows. A strong swept shock wave extends almost over the entire span of
the wing, and induces flow separation over two-thirds of the span. The swept
shock wave is especially strong in the outer one-half of the span and causes a
“mushroom-type” separation zone. In this zone, two counter-rotating vortices
are separated by a saddle point, as necessitated by the rules for skin-friction line
topography (see Sec. 4.2.3, and also Lighthill [85]). In addition to this interest-
ing feature, two nodal points of separation, one nodal point of attachment and
three other saddle points are recognized in Fig. 22. This skin-friction map seems
to be plausible since no topological rule is violated. For instance, no saddle-
point-to-saddle-point connection, which was shown to be structurally unstable
98] occurs, nor is there a nodal-point-to-nodal-point connection without a saddle
point between them (see Fig. 16).

The computed very-near-surface particle paths, or skin-friction lines, which
resemble the oil flow pattern of the experiment are presented in Figs. 23 and
24. The pattern in Fig. 23 was computed using the diagonal algorithm with
the standard nonlinear smoothing. This simulation does compare well in terms
of the extent of the separation region, which has been underpredicted. Indeed,
the experimental separation is more than twice as large as the computed one.
The pattern in Fig. 24, however, was produced using the same algorithm but
with modified smoothing. The modified explicit nonlinear smoothing coefficient
given by Eq. (4.16) was employed, and f(M) = M was used as suggested by Eq.
(4.17). Note that the result of Fig. 24 is in better agreement with the experiment
as indicated by the larger spanwise extent of the separation bubble. Although
there is improvement, topologically Figs. 23 and 24 are the same; both have one

56



nodal point of separation and one saddle point. The nodal point is on the line
of separation and the saddle point is on the line of reattachment.

4.3.2 Effects of Turbulence Model

The turbulence model also has important effects on the surface pattern.
The Baldwin-Lomax model, which is an equilibrium model, predicts too sharp
an increase in the outer layer eddy viscosity through the separation shock [99].
The increase of eddy viscosity from its local equilibrium value far from the wall
leads to more turbulent mixing and to more shear stress to balance the adverse
pressure gradient, suppressing the tendency toward separation. Rotta [100] con-
cluded from experimental data that when turbulent flow is perturbed from its
local equilibrium state, a distance of about one order of magnitude greater than
the boundary layer thickness is required to attain a new equilibrium state. To
account for the upstrcam turbulence history effects, Shang and Hankey [101]
used a relaxation eddy viscosity model, i.e.,

KT = UTeq = (HTeq - HTo)ETP (‘ £ )‘IO> (4.18)
which was applied on the y = const. lines, where w7 is the turbulent dynamic
eddy viscosity, ur., is the local equilibrium eddy viscosity evaluated from Eq.
(3.34), prg is the eddy viscosity at upstream location zg, and A is the relaxation
length. A good review of turbulence model relaxation techniques can be found in
Hung [99]. Conceptually, Eq. (4.18) approximates the experimental observation
that, in an abrupt disturbance of a turbulent flow, the Reynolds stress remains
nearly frozen at its initial value while it is being convected along streamlines, and
then exponentially approaches a new equilibrium state. In a numerical calcula-
tion, the initial location of the disturbance from which the relaxation process is
initiated, zo, and a relaxation length scale which describes the exponential decay
of the eddy viscosity distribution, A, must be specified. There are two limiting
cases which bound the relaxation length. For A = 0, the turbulent eddy viscosity
equals the local equilibrium value, and for A = oo, the initial value pr is frozen
and is used everywhere in the region z > z,,.

The relaxation turbulence model has been applied to the separated flow case
in the previous comparison. Varieties of A values were tried, and A = 406, was
found to give a good agreement with the experimental pressure coefficient dis-
tribution as well as with the skin-friction field. Here é, is the thickness of the
boundary layer at zo. The resulting computed skin-friction field for the case
discussed in Figs. 21-24 is presented in Fig. 25. As seen from the figure, the
streamwise separation is somewhat substantially increased; in fact, it is some-
what overpredicted. Also the location of the separation bubble is more inboard
than the experimental one, but this may be due to insufficient tip resolution in
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the computational grid. The remarkable feature of Fig. 25, however, is that
it reproduces the dominant feature of the experiment, that is, the mushroom-
shaped separation zone. This feature was lacking in the Figs. 23 and 24. In
Fig. 25, although the experiment shows two foci on each side of the saddle point,
the computation predicts two nodal points of separation. This is topologically
acceptable, although not accurate, because a node and a focus are topologically
equivalent (see Fig. 15). The saddle point on the reattachment line was also
predicted by the computation.

The impact of the relaxation turbulence model on the pressure coefficient
is displayed in Figs. 26 and 27. In Fig. 26, several sectional pressure coeffi-
cients are shown across the separation zone. The solid line shows the relaxation
turbulence model and dashed line shows the equilibrium turbulence model. Fig-
ure 26 reveals that the equilibrium model predicts strong shock waves which
more closely resemble the shocks captured in inviscid flow models. The relax-
ation model, however, predicts the pressure plateau downstream of the shock
due to the shock-induced separation. Another feature of the comparison is that
the shock wave system of the relaxation model moved slightly forward relative
to that of the equilibriurn model. Nevertheless this is not totally unexpected.
The displacement thickness 6* of the boundary layer increases due to the shock-
induced separation. This portion of the boundary layer acts like a wedge which
displaces the shock wave system forward. In Fig. 27, computations from the two
turbulence models are compared with experiment. The computed shock posi-
tions are somewhat forward of the experimental ones. However, it is remarkable
that the pressure plateau predicted by the relaxation model is very close to the
experimental one in Fig. 27b. On the other hand, the equilibrium model does
not predict such a phenomenon.

There are several things to keep in perspective when interpreting the dis-
crepancy between the experiment and computation. One of the main problems
is, of course, the turbulence modeling, as was proven by the improved prediction
of the pressure plateau by using a simple relaxation model. Another significant
factor in comparing the computation and experiment is that the experiment may
need Mach number and angle of attack corrections, a common requirement when
comparing with experimental data. Thirdly, the tip resolution in the TNS pro-
gram is still poor which may be responsible for the inaccuracy of the location of
the separation zone. Finally, it is known that prescribing wind-tunnel exit pres-
sure in the computations is useful for predicting the extent of separation and the
shock location [23]. Much improved results would be expected if these sources
of error were eliminated. In the future, a more detailed study will be made with
much finer grid resolution using more powerful machines together with a better
turbulence model. Nevertheless, in this stage, it should be emphasized that the
relaxation turbulence model was applied to the computation of three-dimensional
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separated flows on wings for the first time, and improvements were observed in
the skin-friction topography as well as the pressure coefficient of a low aspect
ratio wing.

In the remaining parts of this chapter, two low aspect ratio wings will be
studied. Of these wings, the first one is an advanced technology wing called
“WING C,” and the other wing is a rather simpler wing with NACA 0012 airfoil
cross-sections. The flow topology on these wings will be thoroughly investigated
by running many cases and comparing with the experimental data when they are
available. The techniques developed in this section were not employed on these
cases presently. However, in the future, as was explained in the previous para-
graph, an attempt will be made to rerun these cases with higher grid resolution
and better turbulence model. For the present, the aforementioned limitations
should be kept in perspective when interpreting the results.

4.4. Simulation of WING C Flow Fields

4.4.1 WING C Design and Testing

In recent years, there have been significant efforts to compute flow fields
around wings in the transonic regime. Consequently, it is important to assess
the accuracy of these computations by comparing them with reliable experimen-
tal data. NASA Ames Research Center and the Lockheed-Georgia Company
contributed to this effort by conducting a cooperative computational and exper-
imental investigation of an advanced technology wing, called “WING C” (Fig.
3). The designers of WING C, R. Hicks of Ames Research Center and B. L.
Hinson of Lockheed-Georgia, used two existing computer codes: FLO22 [102],
a three-dimensional full potential equation solver and a numerical optimization
program based on the Method of Feasible Directions [103]. A highly swept, low-
aspect-ratio wing was selected that had supercritical airfoils with relatively thick
sections, moderate aft loading, mild shock waves, and a mild pressure recovery.
The mild shock wave was accomplished by limiting leading edge local Mach num-
bers to maximum of 1.2 to the leading edge. The design conditions selected were
a Mach number of 0.85 and a lift coefficient of about 0.5, at an angle of attack
of 5°.

A small-scale 0.261 meter semispan model of WING C was tested in the
Lockheed-Georgia Wind Tunnel (CFWT), which has a (0.508 x 0.712m.) test
section. The test Reynolds number based on the mean aerodynamic chord was
10 million. Surface pressures were measured both on the wing and on wind-
tunnel walls for comparison with calculations of wall effects. The small-scale
model data are presented in Ref. [104], and a comparison of these measurements
with several three-dimensional transonic inviscid codes is presented in Refs. [105]
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and [106]. The top and side walls of the three-dimensional test section have a
variable porosity capacity of up to 10%. Most of the wind tunnel testing was
conducted at a fixed wall porosity of 4 percent for minimum wall interference
effects. The influence of the wind tunnel walls on the test data was explored
and a Mach number correction of AM = —0.005 was found necessary. An angle
of attack correction of Aa = 0.9° was also needed in the experiments to match
the computations. The method of matching leading-edge pressures was used to
select an experimental angle of attack of 5.9°, for which the experimental and
computed (FLO22 code, with @ = 5°), leading-edge pressures agreed. Transition
strips were located at a fixed distance from the leading edge equal to 5% of the
mean aerodynamic chord on both the upper and lower surfaces of the wing.

A series of tests with the WING C was also performed by NASA Ames
Research Center as a part of the cooperative effort. For the Ames tests [107],
a large-scale 0.90 meter semispan model was tested in a (1.8 x 1.8 m.) wind
tunnel. Model blockage ratio in the test section was 1.3% at zero angle of attack.
Surface pressure measurements and oil-flow studies were made at the design
angle of attack of 5° over a Mach number range of 0.25 to 0.96 and a Reynolds
number range of 3.4 x 10° to 10 x 10°. No Reynolds number effect on the results
was reported to exist. The lift interference from the tunnel walls was reported
to be small. This is because the leading-edge pressures of the experiment and
computations in the correlations happened to agree with each other at the design
angle of attack of 5°. Transition strips were installed at 4.5% chord.

4.4.2 Attached Flow Cases

The first set of WING C flow computations using the TNS program to be
discussed will be attached flow cases. These cases are included to demonstrate
the two-dimensional nature of the flow in the attached flow regime. This two-
dimensional flow aspect was part of the design goal undertaken by the WING C
design project. Attached flow calculations were done for two supercritical cases.
In all these and subsequent computations, the Reynolds number is based on the
mean aerodynamic chord of the WING C, and turbulent flow calculations are
started at the very leading edge without any transition model.

The first case consists of a slightly supercritical flow at Mo, = 0.70, o = 5°,
and a Reynolds number based on mean-aerodynamic-chord of 6.8 million. Figure
28 shows the pressure coefficient distribution of WING C at 5 spanwise stations.
The agreement between the two experiments and computation is quite good even
at the 7 = 0.90 (tip) location. However, the TNS results agree with the small-
scale model data [104] slightly better than with the large-scale model data [107].
The discrepancy between the two sets of data is probably caused by differences in
wall interference effects, and differences associated with the measurement of angle
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of attack and free-stream Mach number. An increase in the effective boundary-
layer thickness decambers the aft section of a supercritical airfoil, which can
significantly affect the predictions of lift and pitching moment. Figure 28 and
the following figures showing pressure coefficient distributions reveal that the
effect of the thickening boundary layer near the trailing-edge is more significant
in the large-scale model data than it is in the small-scale model data. Therefore,
the trailing-edge pressures of the large-scale model data are consistently lower
than those of the small-scale model data. Although the general agreement is
good, the TNS trailing-edge pressure values are overpredicted compared to the
experiments. Figure 29 shows the experimental oil flow picture from Ref. [107]
and the computed upper-surface skin-friction lines side by side. As seen from
the figure, the flow is almost entirely two-dimensional on the wing, and the
computation accurately reproduces this situation.

The second computation is again an attached flow case with higher Mach
number. The flow conditions are Mo, = 0.82, o = 5°, and Re,, 4. = 6.8 x 10°.
The computed pressure coefficient distributions are compared with data from
the small-scale and large-scale model tests in Fig. 30. The comparison is very
good in general, with the TNS solution in slightly better agreement with the
small-scale model data [104|. The same considerations about the discrepancies
between the experiments and computation presented for the Mo, = 0.70 case
apply here. It is also useful to understand the shock wave development on the
wing for interpreting shock-induced separations. Mach number contours, which
show the shock wave pattern on the upper wing surface, are presented in Fig.
31. A shock wave forms parallel to the leading-edge, and a small second shock
wave forms nearly perpendicular to the root at the tip. Figure 32 shows an
experimental oil-flow photograph and the computed skin-friction lines. In the
oil-flow picture, only a weak shock wave is evident, indicated by a slight S-shape
in the oil streak lines which lie in the outboard section of the wing between
about 15% and 25% chord. This shock wave is not strong enough to separate
the boundary layer, contrary to the earlier computations by Mansour [34]. The
flow is almost two-dimensional in the sense that the spanwise flow is negligible,
and flow deflection angles are less than 10° except near the leading-edge.

4.4.3 Separated Flow Cases

The first separated flow case consists of the WING C design conditions:
M., = 0.85, a = 5°, and Re = 6.8 ¥ 10°. These conditions were intended to
result in attached flow with a mild shock wave and a mild pressure recovery. But,
for reasons discussed in Ref. [107], these conditions produced a “local” (as called
by its author) flow separation. In this dissertation, the adjectives such as “local”
versus “global” or “open” versus “closed” will be avoided because of the current
debate. However, the interested reader may refer to Ref. [86] for particulars.
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The computed pressure coefficient distributions compared with experimental
data are presented in Fig. 33. Two shock wave systems are distinguished: a
leading edge shock and a secondary shock. The computed leading-edge shock
agrees well with the experiments, though there are some discrepancies in the
second shock. The computed second shock seems to agree best with the average
of the experimental results in this region. Again the viscous effects decamber
the aft portion of the wing and the trailing-edge pressures of the large-scale
model data (Kecner [107]) are lower than the small-scale model data (Hinson
and Burdges [104]). Note that the TNS trailing-edge pressures agree well with
the small-scale model data. Figure 34 shows the wing-planform Mach number
contours plotted at a location above the upper-wing surface which displays the
well-known transonic lambda shock-wave pattern.

The experimental oil-flow picture of the same case is presented in Fig. 35.
Figure 36 shows the postulated skin-friction field. A separation line caused by
the swept shock wave emanates from a saddle point with two counter-rotating
vortices on either side. The conjectured skin-friction map also features two saddle
points and one nodal point of attachment. In three-dimensional separation, it is
not possible to define a closed separation zone or “bubble,” as in two-dimensions.
Here, the separation zone is largely fed by the vortical flow on the inboard side
of the saddle point of separation. The tip flow is highly curved inboard towards
the separation zone but does not enter the zone. Also, some streamlines are en-
trapped by the inboard vortex while others pass by the separation region without
being trapped. The flow is almost two-dimensional outside the separation zone.

The computed skin-friction lines for this case are presented in Fig. 37. Note
that an angle of attack correction of +0.9°, i.e. & = 5.9°, was used in the com-
putations to get a closer computational/experimental agreement. In this com-
putation, the global features of the experiment are predicted well: the location
and size of the separation line, the streamlines being trapped by the vortex-like
formation inboard of the separation line, the curvature of the tip streamlines and
almost two-dimensional flow outside the separation zone. The critical points of
the skin-friction map weren’t predicted, except a nodal point near the corner-like
region between the line of separation and the tip flow streamlines. Overall, the
simulation is globally very good and is quite encouraging. Moreover, although the
critical points were not predicted, the computed topology is capable of producing
a map similar to the experimental one: first of all, by increasing the grid resolu-
tion and using the techniques described in Sec. 4.3, the vortical flow inboard of
the line of separation can possibly evolve into a vortex and, since there is already
a nodal point on the other side, emergence of a saddle point between them is
inevitable. Such an evolvement was shown to be possible in Sec. 4.3 by applying
new artificial dissipation techniques and turbulence models. These techniques
weren’t applied in this case, but if applied, a significant chance for improvement
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would be possible. Also, it should be kept in mind that the grid near the tip
is coarse and increasing the resolution would probably improve the correlation.
Another important issue to address is that the thin-layer approximation may
be deficient in this region where there are strong streamwise and crosswise vis-
cous flow gradients which are not accounted for in the thin-layer approximation.
In addition, experimental uncertainties associated with wind-tunnel wall interfer-
ence, angle of attack measurement, free-stream Mach number measurement, etc.,
must be considered in evaluating the computational/experimental correlations.

In light of these encouragements, it is interesting to go one step further and
study the flow field above the surface. Investigation of a three-dimensional flow is
by nature very complex and needs sophisticated graphics utilities. In this work,
a post-processing program called PLOT3D developed by Buning [108] at NASA-
Ames was used. PLOT3D is a graphics program capable of plotting all relevant
quantities of the flow field in three-dimensions. Particularly, the particle-tracing
utility of the PLOT3D was helpful because of its power to display the actual
fluid motion.

The particle paths, in general, can be divided into two groups: “streamlines”
and “sectional streamlines.” These two terms are explained in Fig. 38. If a par-
ticle is released from point A, its path may be plotted in several ways, including
the three shown, AB, AC, and AD. If its motion is not confined to any surface,
it moves according to the fluid dynamic forces and becomes a “streamline.” Note
that in steady flow, pathlines are equivalent to streamlines. If the motion of the
particle is confined to £ — y or y— 2z planes, “sectional streamlines” are obtained:
the lines AD and AC respectively. It is not hard to imagine a sectional stream-
line. For example, the line AD may be likened to the motion of a free-surface
fluid particle when a body is immersed into a liquid and set into a motion. In
this case, the motion of the particle is confined to the free-surface of the liquid.
The sectional streamlines are computed from only the components of velocity on
that particular surface, i.e., the projections of the velocity vectors on the sur-
face. Note that the sectional streamlines are not the same as the projection of
streamlines on the surfaces. For example, if the streamline AB was projected on
the z — y or y — 2 surfaces, lines other than AC or AD would be obtained.

Now, let us explore how to obtain various lines and surfaces which are of
importance in the topography of flow fields. First of all, in steady flow, the
trajectory of a “free” particle is a streamline. It shows exactly where the fluid
is going. The skin-friction lines, which resemble the oil-flow, are simply the
sectional streamlines traced on asurface very near a body. The reader is reminded
that as z — 0 the u/z field becomes identical to the surface stress field of a body
(see Sec. 4.2.2). Therefore, in Computational Fluid Dynamics, the skin-friction
lines are obtained by plotting the particle paths constrained to the first grid
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surface off a body. However, the distance 2z from the body must be essentially
constant to make the u/z field identical to the u field.

The physical meaning of the sectional streamlines is limited. The sectional
streamlines coincide with the true streamlines only on the solid surfaces and
symmetry surfaces if the flow is also symmetric. However, keeping in mind the
limitations, the sectional streamlines are still instrumental for understanding the
flow fields. At this point, some figures which will be discussed later in this paper
can be used here as examples. As for example in Fig. 68, the sectional streamlines
are used to illustrate the vertical extent of the separated region, and the vortical
flow inside that region. From the very same figure, it could be imagined that
a line which emerges from the line of separation extends above the wing, and
divides the vortical flow in the separated region from the free stream which flies
over that region.

If we define a surface which emanates from a line of separation, and which di-
vides the mass of separated fluid from the surrounding fluid as a “streamsurface,”
the aforementioned line in Fig. 68 which is composed of closely packed stream-
lines, is the cross-section of that “streamsurface” versus the JL plane. Therefore,
we understand that it is possible to define the boundaries of a streamsurface by
cutting it through with a sufficient number of planes each of which displays the
sectional streamlines. This was done, for example. in Figs. 54 and 55. The sepa-
rated zone could also be studied by using the sectional streamlines in a different
orientation. In this case, as in Fig. 56, the sectional streamlines are plotted in
the JK (body-parallel) planes. These figures serve to define approximately the
boundary of the streamsurface as observed from above.

In other examples, Figs. 62 and 67, an even more dramatic application of
the sectional streamlines has been made. If we concentrate, say, on Fig. 67, the
boundaries of the vortical flow are evident. In this figure, particles are released
from different normal levels and are confined to stay on their respective planes.
Had the Figs. 67 b, ¢, d been placed on top of each other, the boundaries of the
vortical flow would have coincided. On the other hand, the true streamlines which
were traced for the same case in Fig. 65 don’t give us such clear information,
but give a very complex picture. Hence, the sectional streamlines are extremely
useful for such cases.

There are certain things to keep in mind when dealing with the sectional
streamlines, however. Since they are the integrated curves of the projections
of the velocity vectors on a certain surface, the orientation angle of the cutting
plane is very important. Unless the cutting plane angle is nearly perpendicular
to the lines of separation or reattachment, a distorted view is obtained. This is
illustrated in Fig. 39. The figure depicts skin-friction lines for an ideal case: a
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separation “bubble” which might occur on an infinitely swept wing. The skin-
friction field at the root of such a “bubble” is cut by three planes I-1, II-1I, and
III-III, making an angle of 90°, —45°, and 45°, respectively, with the lines of
separation and reattachment. The separation and reattachment points are des-
ignated by S, S, S, and R,R, R", respectively, on the three cutting planes.
Observe that only plane I-I accurately represents the separation and reattach-
ment lines (S-R). For the other planes, the plotting program cannot accurately
predict these lines, showing the distance between the singular points to be shorter
on plane II-1I (as S’-R’), and longer on plane III-I1I (as S”-R"). The situation
for the actual three-dimensional flows is even more difficult and, without use of
other sectional streamlines, it is not possible to gather accurate information.

These particle tracing techniques are very helpful in understanding three-
dimensional flow fields, and they will now be employed to survey the separated
WING C flow. Figure 40 shows the WING C surface grid together with the index
designations for the planes of interest which will be used in subsequent figures.
Figure 41 is the same as Fig. 37, except it is a three-dimensional perspective view.
In this figure, only one particle at each spanwise 7 station was released from the
J=15 grid line parallel to the leading-edge. The particles were confined to the first
grid surface off the body, and therefore become sectional streamlines which define
skin-friction lines. This figure defines the separation line and the particles which
are entrapped by the separation zone, and also shows that the tip streamlines
do not enter the zone. To help understand the following particle-path plots,
the difference between the streamlines and sectional streamlines on the wing are
demonstrated in Fig. 42. Instead of releasing just one particle from each spanwise
station (as in Fig. 41), two particles were released in different modes. One set of
particles was confined to the first grid surface off the body, and the second set
was released without constraint from the same physical position. Hence, the first
set becomes sectional streamlines or, to be more specific, skin-friction lines, and
the second set becomes streamlines. As observed, two particles released at the
same point trace the same path for a short distance and then diverge. If the two
particles are released upstream of the separation zone, they trace similar paths
until they encounter the separation. In the vicinity of separation, the constrained
particle is entrapped but the free particle is not. It is casy to understand why
the unconstrained particle flies over if the separation zone is thought of as a
solid barrier. This situation may be likened to the phenomenon in Fig. 38.
Here, line AD resembles a constrained particle path and line AB resembles an
unconstrained particle path. Observe that the separation zone in Fig. 42 is thin,
as deduced from the curvature of streamlines above the region.

A series of pictures in Fig. 43 displays the separation surface emanating from

the separation line as well as other interesting features of the three-dimensional
boundary layer. In each picture, particles are released along an L-grid line which
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is perpendicular to the wing from near the body to above the boundary layer.
The particles are released from spanwise stations K = 14, 15, 18, and 21, which
span the separation zone. It should be emphasized that these particles are con-
strained to stay on their respective £-n parallel surfaces to define the separation
surface. If any particle hits the separation surface, it must go around it because
the separation zone behaves like a solid object. Figure 43a shows the particles
released from the K = 14 station, which is the last station, for which particles
are not entrapped by the vortical-like flow of the separation zone. The invis-
cid streamlines are almost parallel to the free-stream direction. As the viscous
boundary layer is gradually penetrated, the streamline curvatures rapidly in-
crease toward the separation zone. Figure 43b shows how the particles released
from K = 15 go around the separation zone. The first particle path off the body
is the skin-friction line which represents the line of separation. Notice that the
second particle path follows parallel to the line of separation and becomes a tip
flow. Figure 43c shows the particles released from the K = 18 plane. This fig-
ure clearly shows how the separation surface evolves from the line of separation.
When the particles released from different levels approach the separation®zone,
they can not penetrate it; rather they flow over the separation surface, which is
also a surface made of streamlines. Finally, Fig. 43d shows that the particles
released from the K = 21 plane avoid the separation zone and pass by it without
entrainment. This was already discovered in the study of the oil-flow pictures
(see Figs. 35 and 36). To give an idea about the thickness of the separation
zone, sectional streamlines constrained to lie within £ -¢ planes are presented in
Fig. 44. The separation zone is extremely thin, being less than 0.001 chords. To
complete the flow field survey, sectional streamlines in planes parallel to the wing
surface (£-n) are presented in Fig. 45. The separation and reattachment lines
are observed in the L = 2 plane, which is the first grid surface off the body. The
Figs. 45 b, ¢ and d, define the boundary of the streamsurface which emanates
from the line of separation in Fig. 45 a. The separation line-type lines in Figs.
45 b, c, and d are the cross-sections of the streamsurface with the JK planes.

The second separated case associated with WING C consists of a flow at
off-design conditions: Mo, — 0.90, a = 5°, and Re — 6.8 ¥ 10°. The computed
and experimental pressure coefficient distributions are compared in Fig. 46.
The leading-edge and aft shock-waves are stronger than those of the previous
case, and the aft shock-wave is further downstream. This is a consequence of
the increased free-stream Mach number. Despite a slight overprediction of the
trailing-edge pressures, the agreement between the experiment and computation
in this difficult case is very good except in the tip region, probably because of
the coarse grid effect. The strength and location of the lambda shock-wave is
accurately predicted. The planform view of WING C showing the lambda-shaped
shock-wave is presented in Fig. 47. This agrees very well with the experimental
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pattern reported in Ref. [104]. The Mach number contours of the £-¢ plane
which cuts the wing in the streamwise direction at the station n = 0.77% is
shown in Fig. 48. The zonal boundaries are also shown in this plot. Note
the smoothness with which the shock wave crosses the zonal interface boundary.
This indicates that the communication between the blocks is implemented in a
conservative manner. In addition, most of the other contours cross the zonal
interface boundaries in a smooth and continuous fashion. Downstream in the
wake where the fine viscous grid interfaces with a relatively coarse grid (see Fig.
5), the wake abruptly stops. This aspect of the solution exists because the coarse
inviscid grid cannot retain the sharp wake gradient.

The surface oil-flow photograph and the present postulation of the skin-
friction lines for this case are presented in Fig. 49. When the Mach number
is increased from 0.85 to 0.90, the flow separation that existed over the outer
30% of the wing moves slightly downstream and grows significantly in size. The
counter-rotating vortices which emerged in the previous case grow substantially,
and the larger vortex inboard of the separation line extends as far as the trailing-
edge. A line of separation emerges from the saddle point of separation. There
is one focus on the tip side and a node of separation on the inboard side of this
line. Another saddle point exists very near this node of separation. This saddle
point lies between the node and the second, larger, focus. There exists another
saddle point near the trailing-edge. The inboard vortex is strong and provides
a mechanism to feed fluid to the separation zone by entrapping the streamlines
coming from the inboard side of the separation zone. The flow between the
separation zone and the symmetry plane is again almost two-dimensional in the
sense that the spanwise flow is negligible.

The computed skin-friction lines for the same case (M, = 0.90) are pre-
sented in Fig. 50. As observed, the agreement between these computed lines
and the experimental picture in Fig. 49 is rather poor. A weak swirling motion
is exhibited in the computation on the inboard side of the separation zone, yet
the smaller vortex near the tip is nonexistent. Because of the coarseness of the
present grid near the tip, this vortex is probably not resolvable. The disagree-
ment occurs close to the tip where the computation does not capture the shock
location well. It is this poor shock location (see Fig. 46) which moves the sepa-
ration line too close to the trailing edge and causes the disagreement between the
experiment and computation. In an attempt to better align the computed line
of separation with that of the experiment, this case was recalculated at a slightly
lower Mach number. It was found that when the Mach number was reduced
slightly, to 0.88, significant changes were observed which were in close agreement
with the M., = 0.90 experiment.

The computed skin-friction lines for this slightly lower Mach number are
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shown in Fig. 51. This flow pattern is indeed more descriptive of the experimental
oil-flow at M., = 0.90: the line of separation moves forward, in better agreement
with experiment, and there is substantially stronger vortical flow in the area of
the inboard vortex. The node of separation in the experiment was captured. The
saddle point which lies near the trailing-edge of the wing in the experiment was
also captured. However, the vortex close to the tip has not been resolved. Had
this vortex been resolved, emergence of the experimental saddle point between
this vortex and the node would have been automatic according to the continuity
equation. The computation also predicts a reattachment line at the trailing-
edge near the tip, though this doesn’t exist in the experiment. To recapitulate,
although quantitative details are not accurately reproduced many qualitative
details are. The location and extent of separation are in reasonable agreement
with experiment, as is the pressure distribution. The onset of vortex formation
which is evident in the experiment is also present in the computation. In addition,
experimental uncertainties associated with wind-tunnel wall interference, angle
of attack measurement, free-stream Mach number measurement, etc., must be
considered in evaluating the computational/experimental correlations.

Although the surface flow was not accurately reproduced, it is instructive
to explore the three-dimensional flow exhibited by the computation above the
wing. Again, the sectional-streamlines will be used to study the flow field. The
computed skin-friction lines which were presented in Fig. 51 are shown again in
perspective view in Fig. 52 to give a more in-depth look at the flow field. The
rapid convergence and divergence of the skin-friction lines clearly mark the sepa-
ration and reattachment lines, respectively. To give an idea about the thickness
of the separation, sectional streamlines are presented on a streamwise cut £-¢
plane at spanwise station K = 17 (Fig. 53). The thickness of the separation zone
is about 0.005 chords; which is much larger than the previous case. Figure 54 is
an expanded view of the previous picture in the vicinity of the line of separation.
Note that a shear surface lifts off the body from the line of separation at point
S on the £-¢ computational plane. This shear surface partitions the outer flow
from the separated flow, and is made of many streamsurfaces emerging near the
separation line which enfold each other. In Fig. 55, a series of sectional stream-
lines in (£-¢) planes which span the separation zone are presented. As seen in
the figure, the boundary layer displacement thickness grows from station K = 12
to K = 20. In this figure, the vertical scale was expanded 5 times with respect to
the horizontal scale to better observe the details. At the K = 19 and 20, a vortex
core is observed under the shear surface. It should be kept in mind that, in all
these plots, there is a substantial amount of transverse flow perpendicular to the
¢ — ¢ planes. Also note that the points of separation and reattachment cannot be
determined accurately from these views for the reasons enumerated in reference
to Fig. 39. Accurate detection is only made possible by the skin-friction lines.
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Sectional streamlines through the separation zone in the surface-parallel
computational planes (£ -7 surfaces) are presented in Fig. 56. This figure gives
a sequence of views from the body surface to the edge of the separation zone. The
shear surface emanating from the line of separation acts as a barrier between the
flow within the zone and the flow upstream of it. In this figure, the approximate
location of the shear surface is seen as a line of cross section between each body-
parallel computational plane and the zone.

The last computed case associated with WING C involved another off-design
condition: My, = 0.95, with @« = 5°, and Re = 6.8 x 10°. The comparison
of the computed skin-friction lines with the experimental oil-flow photograph
was similar to the M, = 0.90 case discussed before and is not presented here.
However, the pressure coefficient comparison is shown in Fig. 57. Despite the
high free-stream Mach number and the large amount of separation, reasonable
agreement is obtained except at 90% semi-span.

4.5 Simulation of NACA 0012 Wing Flow Cases

Simulation of the NACA 0012 wing with wind tunnel walls modeled was pre-
sented in Sec. 4.4. Experiments made by Lockman and Seegmiller [61] furnished
the information necessary to assess the capabilities of the various features of the
TNS code. Among these are the wind-tunnel wall modeling characteristics, and
the effects of artificial viscosity and turbulence models. In order to ascertain the
degree of robustness of the present algorithm and, in particular, the ability of
the present zonal interface scheme to cope with large flow gradients, some NACA
0012 wing free-air cases in more extreme conditions were run.

Three of these cases are presented here: flows with free-stream Mach num-
bers of 0.80, 0.85 and 0.90 at an angle of attack of 5 degrees with a Reynolds
number based on chord of 80 million. Free-air conditions were necessary because
the calculations with wind-tunnel walls modeled for the highest two Mach num-
bers were choked (see Holst et al. [45]). As a result, no experiment is available
to compare with these cases. However, very interesting separated surface flow
patterns and three-dimensional flows above the wing were obtained. They are in-
troduced here with the belief that these solutions will be helpful in understanding
separated wing flows.

The first case consists of a flow with mild streamwise separation. Flow
conditions were Mo, = 0.80, a = 5°, and Re = 8 x 10°. Computed skin-friction
lines are presented in Fig. 58. Except for significant inboard flow at the tip which
is induced by the 5°angle of attack, the surface flow topology for this case is very
similar to the wind-tunnel case presented in Fig. 23. Figure 58 describes a line
of separation, a narrow streamwise separation zone, and a line of reattachment.
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There is a node of separation and a saddle point on the lines of separation and
reattachment, respectively.

The second computation corresponds to a massively separated case. Flow
conditions were M., = 0.85, a = 5°, and Re = 8 x 10°. Figure 59 shows the
wing upper-surface Mach number contours. As observed, there is an S-shaped
swept shock wave which extends from the symmetry plane to very near the tip.
This shock wave causes the boundary layer to separate between 20% to 90% of
semi-span as shown in Fig. 60. A line of separation emanates from a saddle
point with a focus on the inboard side and a nodal point of separation on the
outboard side. This case exhibits a large reverse surface flow between the line of
separation and the line of reattachment, which is located very close and parallel
to the wing trailing-edge. Another saddle point can be recognized at the wing
trailing-edge/tip. It seems that there is another line of secondary separation in
addition to the primary streamwise separation. Surface flow coming from the
tip region and from the line of reattachment coalesce on this line of secondary
separation, and a streamsurface leaves the wing surface.

The large vortex defined by the focus constitutes the root of a large vortical
flow between the lines of separation and reattachment. Also, the streamsurface
emanating from the secondary line of separation probably coils into two small
secondary vortices above the wing. Development of this large vortex and the
secondary vortices above the wing are illustrated in Figs. 61 and 62. Figure 61
presents a series of three-dimensional pictures. They show sectional streamlines
plotted on subsequent body-parallel computational planes in the JK plane.

Pictures from a to h are successive planes above the body surface to a
height of nearly 10% of a chord. The pictures a, b, and ¢ show lines similar
to the separation line of Fig. 60. These lines are the cross sections of the
computational planes with the separation surface which emerges from the line of
separation. Note that there is a saddle point on each of these lines. The large
vortex which coils up from the focus of Fig. 60 maintains its strength throughout
the sequence of computational planes. The secondary separation line of Fig. 60,
though not very clear, breaks into two secondary vortices as shown in Figs. 61d,
6le, and 61f. In these pictures, particles were released inside the separation zone
to describe these vortices. Finally, pictures g and h of Fig. 61 show that these
secondary vortices were probably dispersed and could not be traced any further,
but the large vortex remains. Figure 62 complements Fig. 61 in describing the
vortical flow pattern above the wing. In this figure, particles were released from
the leading-edge at different L-levels and each was constrained in its respective
JK plane. Figs. 62a, 62b, and 62¢ show that the particles very near the wing
are captured by the core of the large vortex, whereas the particles away from the
body flow past it undisturbed. Figure 62d shows the particles captured by the
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big vortex and the secondary vortices as well.

The last case is again a massively separated case. Flow conditions were
My = 090, a = 5°, and Re = 8 x 10°. Again in this case, an S-shaped
shock wave extending from the symmetry plane to very near the tip causes the
boundary layer to separate. This shock wave is stronger than the previous one,
and separates the boundary layer in the same S-shape. In this case, computed
skin-friction lines exhibit a very interesting surface pattern shown in Fig. 63.
The separation zone extends from the symmetry plane to very near the tip, and
the chordwise extent of the separation zone varies from about one- to three-
quarters of a chord. A line of separation emanates from a saddle point which
is located at about two-thirds of the span. A focus occurs near the tip, and a
node of separation is located inboard at about 30% of semispan. On the line
of reattachment, another saddle point is recognized. Expanded views of these
critical points are shown in Fig. 64. In this figure, the focus quite interestingly
defines a motion which is not swirling inward, but swirling outward from the
core. Although not shown here, a surface pressure plot reveals that this vortex
is located at a low pressure region. The primary mechanism which feeds this
vortex seems to be the downward flow coming from the large vortex as seen in
Fig. 65. In this figure, particles are injected from about 40% of chord at L =
2 and are unrestricted. This figure exhibits two important phenomena: 1) there
are two vortices, a large and a small one, and they are located at either side of
the saddle point of separation, 2) it seems as if the streamlines coming from the
large vortex feed the small vortex. Note that particles by the small vortex eject
from it at the tip side. This is a very curious mechanism.

Unlike the particles in Fig. 65, the particles in Figs. 66a and 66b are
restricted to their respective computational JK planes which are parallel to the
surface. They are, therefore, sectional streamlines and define the core of the large
vortex. The vortex core starts from the nodal point of separation shown in Fig.
63 and expands as it moves out from the surface. Sectional streamlines are also
used in Fig. 67 to give the situation a more three-dimensional appearance. In
these figures, the same technique utilized in making Fig. 43 is used. Sectional
streamlines on JK (body-parallel) computational planes are obtained by releasing
particles from different levels at particular spanwise stations. In Figs. 67a and
67b, particles are released from the tip side of the saddle point at K = 18 and 14.
Figure 67a specifically shows that the particles closest to the surface are drawn
into the small vortex. Particles more distant from the surface swirl around the
small vortex but go to the core of the large vortex without entering the small
vortex. Finally, particles away from the body run on straight paths without
swirling. Figure 67b shows the same sort of behavior, but exhibits the particles
captured by the large vortex more clearly. Figures 67c and 67d display the
particle paths for particles released from K = 12 and 10, respectively, which are
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inboard of the saddle point.

The most important feature of these figures is that they define an approxi-
mate envelope of the large vortex. The core of the vortex is observed at the bot-
tom, and the near-circles at each level altogether define an approximate bound-
ary of the three-dimensional vortex. This idea can be supported by placing Figs.
67b, 67¢c, and 67d on top of each other and observing that they fit together. Note
that some particles are drawn toward the low pressure region of the small vortex.
Finally, Fig. 68 shows the sectional streamlines in JL planes which are perpen-
dicular to the wing surface. This cross-sectional plot was made at a semi-span
station of 2y/b = 0.66. Note that at this station, the separation region is large
and easily extends from the Navier-Stokes region, across the zonal boundary,
into the Euler region. The particles pass smoothly across the interface boundary
with no function or slope discontinuities.
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Fig. 14. The Cartesian coordinates, velocities and surface shear-stress vector compo-
nents.
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Fig. 17. Pressure coefficient comparison: NACA 0012 airfoil section, AL =0°, AR > 1,
TR = 1.0, Mos = 0.5, a = 0°, Re, = 3 x 10°.
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Fig. 18. Boundary layer velocity profiles computed from TNS using different smooth-
ing terms: NACA 0012 airfoil section, Ayg = 0°, AR > 1, TR = 1.0,
Mo, = 0.5, o = 0° Re. =3 x 10°
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Fig. 19. Boundary layer velocity comparisons of TNS and TRIVIA: NACA 0012 airfoil
section, Apg = 0°, large aspect ratio, TR = 1.0, Mo, = 0.5, a = 0°, Re. =
1 3 x 10°.
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Fig. 21. Oil-flow pattern on upper wing surface: NACA 0012 airfoil section, AR = 3,
ALg = 20° arwist = 0°, TR = 1.0, M, = 0.828, a = 2°, Re. = 8 x 10°.
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Fig. 22. “Postulated” skin friction lines for flow over the NACA 0012 wing of Fig. 21.
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Fig. 23. Computed skin friction lines for the flow over the NACA 0012 wing of Fig. 21
with standard artificial dissipation model.
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Fig. 24. Computed skin friction lines of the flow over the NACA 0012 wing of Fig. 21
with new artificial dissipation model.
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Fig. 25. Computed skin-friction lines for the flow over the NACA 0012 wing of Fig. 21
with new dissipation model and relaxation turbulence model.
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Fig. 26. Comparison of computed pressure coefficents using the baseline and relax-
ation turbulence models: NACA 0012 airfoil section, AR = 3, AL g = 20°,
TR =10, M, = 0.826, @ = 2°, Re. = 8 x 10%, a) 2y/b = 0.51; b) 2y /b =
0.56; ¢) 2y/b = 0.62; d) 2y/b = 0.66.
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Fig. 27. Comparison of experimental and computed pressure coeflicients using differ-
ent turbulence models: NACA 0012 airfoil section, AR = 3, Apg = 20°,
TR = 1.0, Mo, = 0.826, a = 2°, Re. = 8 x 10°, a)2y/b = 0.25; b) 2y/b =
0.50; ¢) 2y/b = 0.78.
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Fig. 28. Comparison of experimental and computed pressure coefficients for WING C:
My, =0.70, a = 5°, Re .. = 6.8 x 10°,

87




ORIGINAL PAGE IS
OE POOR QU ALITY

Fig. 29. An experimental oil-flow picture (from Ref. [107]) and computed upper sur-
face skin-friction lines for WING C: M, = 0.70, a = 2°, Rem.q.c. = 6.8 X 10°.
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Fig. 30. Comparison of experimental and computed pressure coefficients for WING C:
My =082, a =5° Repmoe = 6.8 x 10°.
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Fig. 31. Mach number contours on the upper surface of WING C: My, = 0.82, a = 5°,
Repm.q.c. = 6.8 x 10°
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Fig. 32. Experimental oil-flow picture (from Ref. {107]) and computed upper surface
skin-friction lines for WING C: My, = 0.82, o = 5°, Rey 0. = 6.8 X 10°.
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Fig. 33. Comparison of experimental and computed pressure coefficients for WING C:

M., = 0.85 a =5° Remqc = 6.8 x10°,
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Fig. 34. Mach number contours on the upper surface of WING C: M, = 0.85, a = 5°,
Rep o = 6.8 x 10°.
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Fig. 35. Experimental oil-flow picture (from Ref. [107]) and an expanded view of
the counter-rotating vortices for WING C: Mo, = 0.85, a = 5°, Réma.c. =
6.8 x 10°. o
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Fig. 36. “Postulated” skin-friction lines for the WING C case shown in Fig. 35
(Mo = 0.85).
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Fig. 37. Computed skin-friction lines for WING C upper surface: Mo = 0.85, a =
5.9°, Rem.q.c. = 6.8 x 10°.
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Fig. 38. Illustration of “streamlines” and “sectional streamlines.”
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Fig. 39. Illustration of obtaining different separation and reattachment points for a
“bubble” depending upon the viewing angle.
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computational planes.

Fig. 40. Perspective view of the WING C surface grid and index designations for the
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Fig. 41. Perspective view of computed skin-friction lines for WING C: M., = 0.85,
o= 5.9° Rep.q. =6.8x 10°.
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Fig. 42. Perspective view of computed “streamlines” and “sectional streamlines” for
WING C: M, = 0.85, a = 5.9°, Reypq.c. = 6.8 x 10°.
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Fig. 44. Sectional streamlines on JL (cross-sectional) computational planes obtained
by “releasing” particles at different L levels from streamwise stations through
the separation zone (M, = 0.85). (Note the expanded z-scale.)
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Fig. 45. Sectional streamlines on JK (body-parallel) computational planes. Particles
are “released” from a line parallel to the leading-edge (Moo = 0.85).
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Fig. 46. Comparison of experimental and computed pressure coefficients for WING C:

Mo, =0.90, o = 5°, Repmac = 6.8 x 105,
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Fig. 47. Mach number contours on the upper surface of WING C: M, = 0.90, o = 5°,
Rem.a.c.. = 6.8 x 10°.
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Fig. 48. Cross-sectional Mach number contours for WING C at 2y/b = 0.77: My, =

0.90, a = 5°, Repm.q.c. = 6.8 x 105,
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Fig. 49. Experimental oil-flow picture(from Ref. [107]) and “postulated” skin-friction
lines for WING C: M, = 0.90, o = 5°, Repp ... — 6.8 X 10°.
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Fig. 50. Computed skin-friction lines for WING C upper surface: My = 0.90, o =
5.0°, Repm.q.c. = 6.8 x 10°.
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Fig. 51. Computed skin-friction lines for WING C upper surface: M, = 0.88, o =
5.0°, Repm.q.c. = 6.8 x 10°.
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Fig. 52. Perspective view of computed skin-friction lines for WING C: M., = 0.88,
a =5.0°, Rem.q.c = 6.8x10°.
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Fig. 53. Sectional streamlines at the K=17 (cross-sectional) computational plane ob-
tained by “releasing” particles at different levels from a station upstream of
separation (Mo, = 0.88).
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Fig. 54. Expanded view of Fig. 53 near the separation point (z-axis has been expanded
10 times more than the x-axis for better definition of the separation region).
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Fig. 55. Sectional streamlines on various JL (cross-sectional) computational planes
obtained by “releasing” particles at different levels from stations through the
separation zone (M, = 0.88). (Note magnification.)
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Fig. 56. Sectional streamlines on JK (body-parallel) computational planes. The par-
ticles are “released” from a line parallel to the leading-edge (Moo = 0.88).
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Fig. 56. concluded.
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Fig. 57. Comparison of experimental and computed pressure coefficients for WING C:
Moo = 0.95, o = 5°, Rem.a.c. = 6.8 x 10°.
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Fig. 58. Computed skin-friction lines for the flow over the NACA 0012 wing; M., =
0.80, a = 5°, Re. = 8 x 10°.
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Fig. 59. Mach number contours on the upper surface of NACA 0012 wing; Mo, = 0.85,
o= 5° Re.= 8 x 10°.
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Fig. 60. Computed skin-friction lines for the flow over the NACA 0012 wing; Mo, =
0.85, a = 5°, Re. = 8 x 10°.
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Fig. 61. Sectional streamlines on JK (body-parallel) computational planes. Particles
are “released” from a line parallel to the leading-edge (Mo, = 0.85).
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Fig. 61. concluded.
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Fig. 62. Sectional streamlines on JK (body-parallel) computational planes obtained by
“releasing” particles at different L levels for a fixed value of J (M, = 0.85).
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Fig. 63. Computed skin-friction lines for the flow over the NACA 0012 wing; Mo, =
0.90, @ = 5°, Re. = 8 x 10°.
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Fig. 65. Three-dimensional streamlines of the flow over the NACA 0012 wing; My, =
0.90, « = 5°, Re. = 8 x 10°.
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Fig. 66. Sectional streamlines on JK (body-parallel) computational planes. Parti-

cles are “released” from a line parallel to the leading-edge at 40% chord
(Moo = 0.85).
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Fig. 67. Sectional streamlines on JK (body-parallel) computational planes obtained by
“releasing” particles at different L levels for a fixed value of J (M, = 0.90).
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Fig. 68. Sectional streamlines in JL (body-normal) plane at 2y/b = 0.66.
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CHAPTER 5
CONCLUSION

5.1 Summary

The significant achievements in this work are associated with both numer-
ical methods and fluid mechanics. A fast, efficient, and reliable computer pro-
gram (TNS) was developed, and using this program, numerical solutions of the
Euler/Navier-Stokes equations for the transonic flow about wing geometries were
obtained. For the first time, computations produced good agreement with exper-
iment for low-aspect-ratio, separated wing flows in the transonic regime. Under
experimental guidance, new numerical techniques were developed to improve the
computations. Contributions to the understanding of separated flows were made
through the extensive use of computer graphics. Familiar as well as new fluid
flow phenomena, which should be of interest to experimental and theoretical fluid
mechanics, was displayed.

The TNS computer code represents the first three-dimensional Euler /Navier-
Stokes zonal algorithm. Using this program, fine grid-resolution flow fields about
wing geometries have been achieved. It is a generic program which includes wind-
tunnel wall or free air simulation capability, and is suitable, with specific exten-
sions, for computing wing-fuselage or wing-fuselage-tail configurations. The TNS
program is more than one order of magnitude faster than comparable Navier-
Stokes solvers for wing geometries reported in the literature. It was shown that,
instead of using the original block-ADI algorithm, by using a diagonal-ADI al-
gorithm with certain enhancements, a speed-up of 40 was possible.

Also, an efficient data management scheme using SSD (solid state device)
resulted in an /O time of about 1-2% of the CPU time for a typical run. On
the other hand, if standard rotating disk had been used, an I/O time of about
1000% of the CPU time would have resulted!

Using the TNS program, good correlation between experiment and compu-
tation was achieved for complex flow calculations associated with shock-induced
separated flows. First, the effects of different artificial dissipation models incorpo-
rated into the block and diagonal algorithms associated with the TNS code were
assessed for attached and separated flows. It was found that these algorithms
computed correct pressure distributions, but surprisingly predicted different skin-
friction fields. Accurate computation of pressure is not the ultimate goal of a
Navier-Stokes solver; even a good potential flow solver can give a reasonable an-
swer if the flow conditions are not extreme. A Navier-Stokes code should resolve
the boundary layer and reasonably compute the viscous and heat transfer effects.
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In this dissertation, a simple scheme modifying the artificial dissipation model
associated with the diagonal-ADI algorithm in the TNS code was proposed and
successfully implemented for both attached and separated flow cases. As a result
of this, for example, C; was increased roughly 50% for an attached flow case,
and showed excellent agreement with the result of another “proven” viscous-
inviscid interaction program. Also, using this scheme, improvements have been
observed on the skin-friction maps of shock-induced separated flows as compared
to oil-flow photographs.

Another aspect of this work has been to prove that a simple idea, such as
the relaxation turbulence model, can improve numerical computations. In this
respect, certain limitations of the algebraic turbulence model due to Baldwin
and Lomax associated with the TNS code were eliminated. As a result, the quite
challenging task of obtaining pressure plateaus associated with boundary layer
separation was achieved. Also, and perhaps more importantly, the distribution
of critical points associated with the skin-friction map of one transonic separated
case (NACA 0012 wing, M, = 0.826, a = 2°) was changed from an incorrect
topology into the correct topology as supported by the experimental oil-flow
picture.

However, the most important outcome of this work was the beginning of
the fulfillment of a long-awaited expectation of seeing agreement between exper-
imental oil-flow pictures and computations for separated flows. This desire was
expressed by George Schairer, a retired senior Boeing company engineer, to the
first author’s research advisor Brian Cantwell in a private communication. In
this work, one very good correlation between the computed skin-friction field
and experimental oil-flow for a highly swept, tapered, and cambered wing, i.e.
the WING C, was obtained for the first time (in the case of M, = 0.85, o = 5°).
Also, two other computed cases (WING C, M, = 0.88, a = 5° and NACA 0012,
M, = 0.826, a = 2°) show relatively good correlation. All computed cases are
in good agreement with experiment in terms of the pressure distributions.

Investigation of the TNS code’s ability to compute massively separated flow
cases in the transonic regime for the NACA 0012 wing resulted in some quite
fascinating phenomena. The skin-friction maps of these cases produced very
well-formed critical points, particulary two surface vortices; one spiraling inward,
another spiraling outward! This is the first time computations of this type have
been produced. It was learned (by private communication, Tobak and Fairlie,
1985) that the presence of an outward spiraling vortex has been presumed to
be less likely by quite a few experimentalists in their work. Also, it is believed
that the illustrations of three-dimensional flow fields above the NACA 0012 wing
and WING C via computed “streamlines” and “sectional-streamlines” put some
light on the nature of three-dimensional vortical flows emanating from separated
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turbulent boundary layers. This is an area where the experiments are limited to
only surface oil-flow techniques, or again limited dye or smoke flow techniques.
It is hoped that a theoretical or experimental fluid mechanics researcher may
further benefit from the computed results.

5.2 Recommendations for Future Work

Throughout this work, the lack of sufficient grid resolution has been the
single most important limiting item. Without enough grid resolution, it is not
possible to give a definitive answer to the question of discrepancy between an
experiment and computation. Therefore, the first recommendation is to rerun
these cases with higher grid resolution when a faster computer with more memory
is available. Another way of refining the grid without waiting for a new computer
is to place additional zones in critical regions of the flow; for example, the tip.
An H-C or O-C grid topology at the tip would be ideal for this task. However,

this necessitates a more sophisticated interpolation program to handle the new
situation.

As might be remembered, another important shortcoming was the poor res-
olution of the viscous wake. The viscous grid zones do not extend downstream
far enough to resolve the far wake. Since the coarse Euler grid cannot support
the high gradients associated with a wake structure, this causes certain inac-
curacies, and can become a very significant factor especially at high angles of
attack involving future applications with multiple lifting surfaces. However, it is
expected that placing another zone in the wake will solve the problem.

The importance of artificial dissipation was previously emphasized, and a
simple correction was suggested which worked quite nicely. However, a better
scheme is highly desirable. Probably, the present scheme which uses the sum of
the spectral radii of the flux jacobians as a coefficient is not good, because it
varies like O(1/A¢) with distance ¢ through the boundary layer. This scheme
was originally designed for the Euler equations where it works well. An improved
scheme which is especially designed for Navier-Stokes computations would be
appropriate.

Turbulence modeling is, of course, extremely important for high Reynolds
number flows and for separated flows. It is known that, with the exception of
few cases, the Baldwin-Lomax or Cebeci-Smith algebraic eddy viscosity models
cannot properly handle two- or three-dimensional separated flows. Work needs to
be done in this area implementing existing or developing new turbulence models.
This should be done with sufficiently refined grids so as to eliminate coarse grid
effects from affecting the results.
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One subject which deserves special attention is wind-tunnel wall simula-
tion. It would be appropriate to model porous wind-tunnel walls and assess their
effects. Before this can be successful, detailed measurements at the walls are
required. There is plenty of room for improvement with solid wind-tunnel walls
as well. As is known quite well from two-dimensional computational work, pre-
scribing wind-tunnel exit pressure as well as upper and lower wall pressures as
boundary conditions is extremely important. It is believed that providing these
capabilities to the TNS code should improve wind tunnel wall simulations. It
should especially lessen the discrepancy between the experimental measurement
and computation of the shock strength and location.

All of the separated flow computations in this dissertation belong to shock-
induced separations at high Reynolds and Mach numbers. However, it would be
interesting to investigate flows for the subcritical or even low subsonic regimes
at high angles of attack. Such a study would help in understanding separation
due to adverse pressure gradients. The aircraft industry would benefit greatly
from this, because such a calculation simulates stall behavior of a wing during
take-off or landing.
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Appendix A
FLUX JACOBIAN AND VISCOUS COEFFICIENT MATRICES

The flux jacobians 4, B, and ¢ are given by

[ Ko K, K,

Ki¢* — ub Ko+0—-Ki(v-2)u Kyu—(y-1)Kv
K2¢2-’U0 Klv—Kz(fy—l)u K0+0—K2(’7—2)‘U
K3¢? — wé Kyw - K3(v—1)u Kyw — K3(y - 1)v
2

026 —(e/p)]  {Kilv(e/p) — ¢?] {K2[v(e/p) — ¢?]
! —(v— 1)ub} — (v — 1)v8}
K 0 -

Kzu—(v-1)Kyw Ki(y—1)
K3‘U—(’7— l)ng K2(’)'— l)
Ko+ 0 - Ka(y-2w Ks(v-1)
{K3[v(e/p) — ¢7] Ko + 0
—(v - 1wb} :

(A.1)

where
% = 0.5(y - 1)(u2 +v?4+ w2)

0 =Kiu+ K+ Kaw

and, for example to obtain A,
KO: Eta Klzé.z’ K2: £y$ K3:Ez

also, the viscous coefficient matrix is given by

0 0 0 0
ma1 b (p) @b (p

Mn = mai (126§(
mg a3 (p”!) asb.(p™!) ac
ms) ms2 ms3 M54 aobe(p~?)



with
may = o b, (—u/p) + azb.(—v/p) + azb (—w/p)

mgy = a28(~u/p) + aabs(—v/p) + asb;(—w/p)

may = a3b.(—u/p) + asb.(—v/p) + asb (—w/p)

msy = anbe(—u?/p) + azb(—2uv/p) + azb;(—2uw/p)
+ agbe(—v?/p) + acb(—w?/p) + asb(—2vw/p)
+ cobc(—e/p?) + cob(u? +v* + w?)/p]

(A.3)
msy = —ma; — aobe(u/p), msz = —mzy — aobi(v/p)
msy = —my; — aobs(w/p)

ao = ykProl (¢ + 2+ ¢2) o0 = ul(4/3)¢2 + ¢ + <7
a2 = (1/3)¢asy, o3 = (1/3)¢xSz
ag= s+ (4/3)) +¢2),  as = (1/3)ys2

ac = ple? + ¢+ (4/3)¢]]
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Appendix B

SIMILARITY TRANSFORMATION MATRICES

The similarity transformation matrix for the Jacobian matrices A, B, and

-

Cis ) . . .
k. k, k.
I::Iu I::yu - l::zp l::zu + I::yp
T, = Z;:cv + l%zp _ I‘;yv‘v I;zv~— iéa:p
kw — kyp kyw +kzp k.w
[kz9?/ (v — 1) [ky¢2/('7 - 1) [szpz/('V —1)
_+p(l::zv - I::yw)] +p(l~cxw - I::zu)] +p(l~cyu - l::xv)]
a a i
a(u + k) a(u — kzc)
a(v + kyc) a(v — kyc) : (B.1)
a(w + kc) a(w — k,c)

al(6® +¢*)/(v = 1)+ ch] af(¢* + ¢?)/(v— 1) — cf] ]

where, k = £, 7, and ¢ for A, B, and C respectively. Also, the inverse transfor-

mation matrix is given by

[ [k2(1 - ¢2/~c2) ke(y — 1)uc™?  fkep™?

—p~ koo — kyw)] i +kz(v — 1)ve™?

L R e S
-1 —p:l(k,w —kou)]  +ky(y - uc™? )

, Ik2(1~_ ¢2/f2) B [_kyp_l _ [kzp~?

—p 7 kyu — kav)]  tko(y—ue™?] k(v - 1)ve?

B¢ - 00) ﬁ[k;'cc = (v = 1)u] B[kyc —(v—-1)v]

L B(¢? + cb) —Blkze + (v + Du] —Blkye+ (v — 1)v]

(Eypt 4 sty Dwe?] —kaly 1)
[kxp_j +ky(v - Nwe™? _Ify('Y —1)c™?

k(v — we?2 k )
ﬂ[kgc — (- 1]
—Blkze + (v~ 1w]
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where, 8 = k,u + l~cyv + k,w and, for example, k, = kz/(k2+ k2 + k2)1/2 ] etc.

Also, ¢? = 0.5(y - 1)(uv? + vi + w?), a = p/V/2¢c and B = 1/v/2pc.
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